18 research outputs found

    Have you forgotten? A method to assess if machine learning models have forgotten data

    Get PDF
    In the era of deep learning, aggregation of data from several sources is a common approach to ensuring data diversity. Let us consider a scenario where several providers contribute data to a consortium for the joint development of a classification model (hereafter the target model), but, now one of the providers decides to leave. This provider requests that their data (hereafter the query dataset) be removed from the databases but also that the model `forgets' their data. In this paper, for the first time, we want to address the challenging question of whether data have been forgotten by a model. We assume knowledge of the query dataset and the distribution of a model's output. We establish statistical methods that compare the target's outputs with outputs of models trained with different datasets. We evaluate our approach on several benchmark datasets (MNIST, CIFAR-10 and SVHN) and on a cardiac pathology diagnosis task using data from the Automated Cardiac Diagnosis Challenge (ACDC). We hope to encourage studies on what information a model retains and inspire extensions in more complex settings.Comment: Accepted by MICCAI 202

    Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule

    Get PDF
    The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump–x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics

    Enhancing access to reports of randomized trials published world-wide – the contribution of EMBASE records to the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Randomized trials are essential in assessing the effects of healthcare interventions and are a key component in systematic reviews of effectiveness. Searching for reports of randomized trials in databases is problematic due to the absence of appropriate indexing terms until the 1990s and inconsistent application of these indexing terms thereafter.</p> <p>Objectives</p> <p>The objectives of this study are to devise a search strategy for identifying reports of randomized trials in EMBASE which are not already indexed as trials in MEDLINE and to make these reports easily accessible by including them in the Cochrane Central Register of Controlled Trials (CENTRAL) in <it>The Cochrane Library</it>, with the permission of Elsevier, the publishers of EMBASE.</p> <p>Methods</p> <p>A highly sensitive search strategy was designed for EMBASE based on free-text and thesaurus terms which occurred frequently in the titles, abstracts, EMTREE terms (or some combination of these) of reports of trials indexed in EMBASE. This search strategy was run against EMBASE from 1980 to 2005 (1974 to 2005 for four of the terms) and records retrieved by the search, which were not already indexed as randomized trials in MEDLINE, were downloaded from EMBASE, printed and read. An analysis of the language of publication was conducted for the reports of trials published in 2005 (the most recent year completed at the time of this study).</p> <p>Results</p> <p>Twenty-two search terms were used (including nine which were later rejected due to poor cumulative precision). More than a third of a million records were downloaded and scanned and approximately 80,000 reports of trials were identified which were not already indexed as randomized trials in MEDLINE. These are now easily identifiable in CENTRAL, in <it>The Cochrane Library</it>. Cumulative sensitivity ranged from 0.1% to 60% and cumulative precision ranged from 8% to 61%. The truncated term 'random$' identified 60% of the total number of reports of trials but only 35% of the more than 130,000 records retrieved by this term were reports of trials. The language analysis for the sample year 2005 indicated that of the 18,427 reports indexed as randomized trials in MEDLINE, 959 (5%) were in languages other than English. The EMBASE search identified an additional 658 reports in languages other than English, of which the highest number were in Chinese (320).</p> <p>Conclusion</p> <p>The results of the search to date have greatly increased access to reports of trials in EMBASE, especially in some languages other than English. The search strategy used was subjectively derived from a small 'gold standard' set of test records and was not validated in an independent test set. We intend to design an objectively-derived validated search strategy using logistic regression based on the frequency of occurrence of terms in the approximately 80,000 reports of randomized trials identified compared with the frequency of these terms across the entire EMBASE database.</p

    Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement

    Get PDF
    Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFκB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments

    Heavy and light roles: myosin in the morphogenesis of the heart

    Get PDF
    Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin lightchain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed
    corecore