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Abstract. In the era of deep learning, aggregation of data from several
sources is a common approach to ensuring data diversity. Let us consider
a scenario where several providers contribute data to a consortium for the
joint development of a classification model (hereafter the target model),
but, now one of the providers decides to leave. This provider requests that
their data (hereafter the query dataset) be removed from the databases
but also that the model ‘forgets’ their data. In this paper, for the first
time, we want to address the challenging question of whether data have
been forgotten by a model. We assume knowledge of the query dataset
and the distribution of a model’s output. We establish statistical meth-
ods that compare the target’s outputs with outputs of models trained
with different datasets. We evaluate our approach on several benchmark
datasets (MNIST, CIFAR-10 and SVHN) and on a cardiac pathology
diagnosis task using data from the Automated Cardiac Diagnosis Chal-
lenge (ACDC). We hope to encourage studies on what information a
model retains and inspire extensions in more complex settings.

Keywords: Privacy · Statistical measure · Kolmogorov-Smirnov

1 Introduction

Deep learning requires lots of, diverse, data and in healthcare likely we will
need to enlist several data providers (e.g. hospital authorities, trusts, insurance
providers who own hospitals, etc) to ensure such data diversity. To develop
models, data from several providers must thus be either centrally aggregated or
leveraged within a decentralized federated learning scheme that does not require
the central aggregation of data (e.g. [1, 13, 14, 17, 19]). Thus, several providers
will contribute data for the development of a deep learning model e.g. to solve
a simple classification task of normal vs. disease. Suddenly, one of the providers
decides to leave and asks for the data to be deleted but more critically that the
model ‘forgets’ the data.

Let us now assume that the model has indeed not used the data and has
‘forgotten’ them (we will not care how herein) but we want to verify this. In
other words, and as illustrated in Fig. 1, our problem is to assess whether the
model has not used the data under question in the training set.
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model														f(x; D*,θ*)
Does f(x; D*,θ*)

use DQ? 

Auditor

Provider 
of data DQ

Fig. 1. Our goal. We aim to develop an approach that an ‘auditor’ can use to ascertain
whether a model f(x;D∗; θ) has used data DQ during training.

We consider that an auditor will have access to the query dataset DQ and the
model f(x;D∗, θ∗), (trained on data D∗) to render a decision whether f() retains
information about DQ. We assume that the training dataset D∗ is unknown
but both D∗ and DQ are sampled from a known domain D for a given known
task.1 We emphasize that we are not proposing a method that forgets data, as
for example the one in [8]. We believe that assessing whether data have been
forgotten is an important task that should come first (because without means
to verify claims, anyone can claim that data have been forgotten).

Related work is limited. In fact, our communities (machine learning or med-
ical image analysis) have not considered this problem yet in this form. The
closest problem in machine learning is the Membership Inference Attack (MIA)
[4, 5, 16, 18, 20]. While these works borrow concepts from MIA, as we detail in
the related work section, MIA sets different hypotheses that have considerable
implications in returning false positives when data sources overlap. Our major
novelty is setting appropriate test hypotheses that calibrate for data overlap.

Our approach builds on several key ideas. First, inspired by [18], we adopt
the Kolmogorov-Smirnov (K-S) distance to compare statistically the similarity
between the distribution of a model f()’s outputs and several purposely con-
structed reference distributions. To allow our approach to operate in a black-
box setting (without precise knowledge of f(), we construct ‘shadow’ models
(inspired by [20]) to approximate the target model f(); however, we train the
shadow models on DQ but also on another dataset DC sampled from domain D
which does not overlap (in element-wise sense) DQ.

Contributions:

1. To introduce a new problem in data privacy and retention to our community.

2. To offer a solution that can be used to detect whether a model has forgotten
specific data including the challenging aspect when data sources may overlap.

3. Experiments in known image classification benchmark datasets to verify the
effectiveness of our approach. Experiments on the pathology classification
component of the ACDC simulating a healthcare-inspired scenario.

1 Knowledge of the task (e.g. detect presence of a pathology in cardiac MRI images),
implies knowledge of the domain D (e.g. the space of cardiac MRI images). Without
this assumption, D∗ can be anything, rendering the problem intractable.
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2 Related work

The purpose of Membership Inference Attack is to learn which data were used to
train a model. The hypothesis is that a model has used some data and the goal
is to find which part of the query data are in the training set. Here we briefly
review key inspirational approaches.2

In [20] they train a model fattack that infers whether some data D were
used by f . fattack accepts as inputs the decisions of f (the softmax outputs), D
and the ground-truth class. Their premise is that machine learning models often
behave “differently on the data that they were trained on vs. data that they ‘see’
for the first time”. Thus, the task reduces to training this attack model. They
rely on being able to generate data that resemble D (or not) and train several,
different, ‘shadow’ models that mimic f to obtain outputs that can be used to
train fattack. We rely here on the same premise and use the idea of training
shadow models of f() to enable gray-box inference on f() using only its outputs.

In [18], in the context of keeping machine learning competitions fair, using
the same premise as [20], they propose a statistical approach to compare model
outputs, and eschew the need for fattack. They use Kolmogorov-Smirnov (K-S)
distance to measure the statistical similarity between emissions of the classifier
layer of a network between query data and a reference dataset to see whether
models have used validation data to train with. However, their approach assumes
that both query (validation set) and reference datasets, which in their context is
the testing set, are known a priori. We adopt (see Section 3) the K-S distance as
a measure of distribution similarity but different from [18] we construct reference
distributions to also calibrate for information overlap.
Why our problem is not the same as MIA: An MIA algorithm, by design,
assumes that query data may have been used to train a model. Whereas, we care
to ascertain if a model has not used the data. These are different hypotheses
which appear complementary but due to data source overlap have considerable
implications on defining false positives and true negatives.3 When there is no
information overlap between datasets, a MIA algorithm will return the right deci-
sion/answer. However, when DQ and D∗ statistically overlap (i.e. their manifolds
overlap), for a sample both in DQ or D∗, a MIA algorithm will return a false
positive even when the model was trained on D∗ alone. In other words, MIA
cannot tell apart data overlap. Since overlap between DQ and D∗ is likely and
a priori the auditor does not know it, the problem we aim to address has more
stringent requirements than MIA. To address these requirements we assume that
we can sample another dataset DC from D (that we can control not to at least
sample-wise overlap with DQ) to train shadow models on DC .

2 We do not cover here the different task of making models and data more private, by
means e.g. of differential privacy. We point readers to surveys such as [9, 10] and a
recent (but not the only) example application in healthcare [14].

3 In fact, overlap will frequently occur in the real world. For example, datasets collected
by different vendors can overlap if they collaborate with a same hospital or if a
patient has visited several hospitals. Our method has been designed to address this
challenging aspect of overlap.
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Algorithm 1 The proposed method.

Input: the target model f(x;D∗, θ∗), query dataset DQ and dataset domain D.
Output: answer to hypothesis if f(x;D∗, θ∗) is trained with DQ.

Step 1. Train f̃(x;DQ, θQ) with the same design of f(x;D∗, θ∗).
Step 2a. Sample the calibration dataset DC from domainD but without overlapping
(in sample-wise sense) DQ.

Step 2b. Train f̃(x;DC , θC) with the same design of f(x;D∗, θ∗).
Step 3. Find r(TDQ|DQ

), r(TDQ|D∗) and r(TDQ|DC
) (Eq. 1).

Step 4. Find KS(r(TDQ|DQ
), r(TDQ|D∗)), KS(r(TDQ|DQ

), r(TDQ|DC
)) (Eqs. 2, 3).

Step 5. Find ρ =
KS(r(TDQ|DQ

),r(TDQ|D∗
))

KS(r(TDQ|DQ
),r(TDQ|DC

))
(Eq. 4).

return If ρ ≥ 1, the target model has forgotten DQ. Otherwise (ρ < 1), has not.

3 Proposed method

We measure similarity of distributions to infer whether a model is trained with
the query dataset DQ, i.e. if D∗ has DQ or not. Note that this is not trivial since
D∗ is unknown. In addition, the possible overlap between D∗ and DQ introduces
more challenges as we outlined above. To address both, we introduce another
dataset DC sampled from domain D but without overlapping (in element-wise
sense) DQ. The method is summarized in Algorithm 1 with steps detailed below.

Notation: We will consider x, a tensor, the input to the model e.g. an image.
We will denote the target model as f(x;D∗, θ∗) that is trained on dataset D∗

parametrised by θ∗. Similarly, we define query f̃(x;DQ, θQ) and calibration mod-

els f̃(x;DC , θC), where both models share model design with the target model.
If DQ has N samples (N � 1), we use y{i}, i = {1, · · · , N}, a scalar, to denote
the ground-truth label of data x{i} of DQ. We denote with t{i}, i = {1, · · · , N},
a M -dimensional vector, the output of a model with input x{i}. Hence, t{i}[y{i}]
denotes the output of the model t{i} for the ground-truth class y{i} (confidence
score). We further define the N × 1 vector cDQ|D∗ , which contains the values

of t{i}[y{i}], i = {1, · · · , N} in an increasing order. We define as TDQ|D∗ the
N ×M matrix that contains all outputs of the target model f(x;D∗, θ∗) that
is tested with DQ. Similarly, we define TDQ|DQ

and TDQ|DC
for the outputs of

f̃(x;DQ, θQ) and f̃(x;DC , θC), respectively, when both are tested with DQ.

3.1 Assumptions on f()

We follow a gray-box scenario: access to the output of the model f(x;D∗, θ∗)
before any thresholds and knowledge of design (e.g. it is a neural network) but
not of the parameters (e.g. weights) θ∗. (Model providers typically provide the
best (un-thresholded) value as surrogate of (un)certainty.)
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3.2 Kolmogorov-Smirnov distance between distributions

We denote as r(TDQ|D∗) (a N × 1 vector) the empirical cumulative distribution

(cdf) of the output of the target model when tested with DQ. The nth element
rn(TDQ|D∗) is defined as:

rn(TDQ|D∗) =
1

N

N∑
i=1

I
[−∞,c

{n}
DQ|D∗

]
(c
{i}
DQ|D∗), (1)

where I
[−∞,c

{n}
DQ|D∗

]
(c
{i}
DQ|D∗) the indicator function, is equal to 1 if c

{i}
DQ|D∗ ≤

c
{n}
DQ|D∗ and equal to 0 otherwise.

Our next step is to create a proper empirical distribution as reference to
compare against r(TDQ|D∗). Motivated by [20], we propose to train a query model

f̃(x;DQ, θQ) with the same model design as the target model. We then obtain
(as previously) the output cumulative distribution r(TDQ|DQ

). We propose to
use r(TDQ|DQ

) as the reference distribution of dataset DQ. Hence, measuring
the similarity between r(TDQ|D∗) with r(TDQ|DQ

) can inform on the relationship
betweenDQ andD∗, which is extensively explored in the field of dataset bias [21].
Following [18], we use Kolmogorov–Smirnov (K-S) distance as a measure of the
similarity between the two empirical distributions.

K-S distance was first used in [6] to compare a sample with a specific reference
distribution or to compare two samples. For our purpose we will peruse the two-
sample K-S distance, which is given by:

KS(r(TDQ|DQ
), r(TDQ|D∗)) = sup|r(TDQ|DQ

)− r(TDQ|D∗)|1, (2)

where sup denotes the largest value. K-S distance ∈ [0, 1] with lower values
pointing to greater similarity between r(TDQ|D∗) and r(TDQ|DQ

).
If D∗ contains DQ, the K-S distance between r(TDQ|DQ

) and r(TDQ|D∗) will
be very small and ≈ 0, i.e. KS(r(TDQ|DQ

), r(TDQ|D∗)) ≈ 0. On the contrary,
if D∗ has no samples from DQ, then the value of KS(r(TDQ|DQ

), r(TDQ|D∗))
depends on the statistical overlap of D∗ and DQ. However, this overlap is chal-
lenging to measure because the training dataset D∗ is assumed unknown (and
we cannot approximate statistical overlap with element-wise comparisons).

3.3 Calibrating for data overlap

We assume the training data D∗ of model f(x;D∗, θ∗) are sampled from a do-
main D. To calibrate against overlap between D∗ and DQ, we sample a cali-
bration dataset DC from D but ensure that no samples in DQ are included in

DC (by sample-wise comparisons) and train the calibration model f̃(x;DC , θC).

Inference on model f̃(x;DC , θC) with DQ, the output empirical cumulative dis-
tribution r(TDQ|DC

) can be calculated in a similar fashion as Eq. 1. To compare
the similarity between DQ and DC , we calculate:

KS(r(TDQ|DQ
), r(TDQ|DC

)) = sup|r(TDQ|DQ
)− r(TDQ|DC

)|1. (3)
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We argue that Eq. 3 can be used to calibrate the overlap and inform if D∗

contains DQ.4 We discuss this for two scenarios:
1. D∗ does not include any samples of DQ. Since DC and DQ do not
overlap in a element-wise sense by construction, then data of D∗ should have
higher probability of statistical overlap with DC . In other words, the calibration
model can be used to mimic the target model. By sampling more data from
domain D as DC , there will be more statistical overlap between DC and DQ.
Hence, the statistical overlap between a large-size dataset DC and DQ can be
used to approximate the (maximum) possible overlap between D∗ and DQ i.e.
KS(r(TDQ|DQ

), r(TDQ|D∗)) ≥ KS(r(TDQ|DQ
), r(TDQ|DC

)).
2. D∗ contains samples of DQ. In this case, samples in DQ that are also in D∗

will introduce statistical overlap between DQ and D∗, which is well demonstrated
in [18]. Based on our experiments, we find that the overlap between DQ and D∗

is consistently less than that of DQ and DC i.e. KS(r(TDQ|DQ
), r(TDQ|D∗)) <

KS(r(TDQ|DQ
), r(TDQ|DC

)).
Thus, we propose to use KS(r(TDQ|DQ

), r(TDQ|DC
)) as a data-driven indi-

cator for detecting if D∗ contains DQ. To quantify how much the target model
has forgotten about DQ, we capture the two inequalities above in the ratio:

ρ =
KS(r(TDQ|DQ

), r(TDQ|D∗))

KS(r(TDQ|DQ
), r(TDQ|DC

))
. (4)

In the first scenario i.e. D∗ does not include any samples of DQ, the inequality
KS(r(TDQ|DQ

), r(TDQ|D∗)) ≥ KS(r(TDQ|DQ
), r(TDQ|DC

)) translates to ρ ≥ 1.
Instead, in the second scenario, ρ < 1. Thus, if ρ ≥ 1, this implies the target
model has forgotten DQ. On the contrary, if ρ < 1, implies the target model has
not forgotten DQ.

4 Experiments

We first perform experiments on benchmark datasets such as MNIST [12], SVHN
[15] and CIFAR-10 [11] to verify the effectiveness of the proposed method. Then,
we test our method on the ACDC dataset using the pathology detection com-
ponent of the challenge [3]. All classifiers in our experiments are well-trained
(adequate training accuracy) such that the output statistics well approximate
the input statistics. All model designs are included as Supplementary Material.

4.1 Benchmark datasets - MNIST, SVHN and CIFAR-10

Benchmark datasets: MNIST contains 60,000 images of 10 digits with image
size 28 × 28. Similar to MNIST, SVHN has over 600,000 digit images obtained
from house numbers in Google Street view images. The image size of SVHN is

4 As mentioned previously we cannot measure statistical overlap between D∗ and DC

(or DQ) since D∗ is unknown. Furthermore, statistical overlap in high-dimensional
spaces is not trivial [2, 7], and hence we want to avoid it.
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Table 1. Benchmark datasets results. The query dataset DQ is MNIST. The training
dataset D∗ has different variants as listed below. The K-S distances are calculated with
Eq. 2. DC for defining ρ is SVHN. Bold number in the table is the threshold.

Training dataset (D∗) MNIST
%SVHN SVHN + %MNIST

CIFAR-10
50% 75% 100% 10% 50% 100%

KS(r(tDQ|DQ
), r(tDQ|D∗)) 0.049 0.669 0.652 0.596 0.056 0.039 0.029 0.957

ρ 0.082 1.122 1.094 1.000 0.094 0.065 0.049 1.606

32×32. Since both datasets are for the task of digit recognition/classification we
consider to belong to the same domain D. We use CIFAR-10 as an out of domain
D dataset to validate the method. CIFAR-10 has 60,000 images (size 32×32) of
10-class objects (airplane, bird, etc). To train our models, we preprocess images
of all three datasets to gray-scale and rescale to size 28× 28.
Results and discussion: We consider MNIST as DQ. Experimental results are
listed in Table 1. We first verify if our method can detect the simple case where
the target model has been fully trained with DQ. According to our findings (first
column of Table 1) as expected ρ = 0.082� 1. Other cases where we assume D∗

is drawn only from DC (SVHN) give ρ > 1. In the challenging setting when the
target model was trained with a mix of data from SVHN and parts of MNIST,
ρ ∼ 0. We draw attention to the case of SVHN+%100MNIST. ρ = 0.049 indicates
that the target definitely has not forgotten the query dataset.

For exploration purposes, we consider the extreme case of D∗ not in the
domain ofDQ. We train a target model with CIFAR-10 which has little statistical
information overlap with MNIST. Hence, we would expect our method to return
a ρ > 1, which agrees with the result ρ = 1.606 (highest in the table).

Next we assess the scenarios that D∗ does not include any samples of DQ.
We consider SVHN as DC and train target models with D∗, subsets of SVHN.
The results ρ of 50% and 75% SVHN are 1.122 and 1.094 that both higher than
ρ = 1. Higher ρ points to lower information overlap between DQ and D∗. Hence,
the large-size DC i.e. %100SVHN has the largest statistical overlap with DQ.

To check the sensitivity of our method when D∗ contains part of DQ, we train
two models with SVHN and part of MNIST (10% and 50%). We observe that
both have ρ < 1. Specifically, including only 10% of MNIST causes (1−0.094)÷1
= 90.6% drop of ρ value. This suggests that if the training dataset contains part
of DQ, our method can still accurately detect these cases.

Some uncertainty may arise if ρ is hovering around 1. However, we did not
observe such cases when D∗ contains samples from DQ in our extensive experi-
ments. We advise to run multiple runs of experiments to statistically eliminate
such uncertainty if needed.

4.2 Medical dataset - ACDC

ACDC dataset: Automated Cardiac Diagnosis Challenge (ACDC) dataset is
composed of cardiac images of 150 different patients that are acquired with two
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3T

1.5T

DCM HCM MINF NOR RV

Fig. 2. Example images of ACDC 1.5T and ACDC 3T datasets. DCM: dilated
cardiomyopathy. HCM: hypertrophic cardiomyopathy. MINF: myocardial infarction.
NOR: normal subjects. RV: abnormal right ventricle.

MRI scanners of different magnetic strengths, i.e. 1.5T and 3.0T. For each pa-
tient, ACDC provides 4-D data (weight, height, diastolic phase instants, systolic
phase instants). To simulate several data providers we split the original training
data of ACDC into two datasets: we consider the images at 1.5T field strength
as one source and those at 3T as the other. Overall, ACDC 1.5T has 17,408 im-
ages and ACDC 3T has 7,936 images (Examples are shown in Fig. 2.). For both
datasets, four classes of pathology are provided and one for normal subjects (for
a total of 5 classes). We randomly crop all images to 128× 128 during training.
Results and discussion: We consider ACDC 3T as DQ and assume the domain
D spans the space of cine images of the heart in 1.5T or 3T strength. ACDC
1.5T is the calibration dataset DC . Results are shown in Table 2.

We first perform experiments to verify if our method can correctly detect
whether DQ is in D∗. Similar to benchmark datasets, all models trained with
ACDC 3T or part of ACDC 3T have ρ < 1. Other models trained without any
data from ACDC 3T have ρ ≥ 1. Hence, for ACDC dataset, our method returns
correct answers in all experiments.

According to %ACDC 1.5T results, a large-size dataset DC (%100 ACDC
1.5T) achieves lower K-S distance compared to 50% and 75% ACDC 1.5T. This
supports our discussion of the scenario when D∗ does not include any samples
of DQ. Note that when mixing all data of ACDC 1.5T and only 10% of 3T, the
K-S distance drops (1 − 0.750) ÷ 1 = 25%. It suggests even if part of DQ is in
D∗, the proposed method is still sensitive to detect such case.

5 Conclusion

We introduced an approach that uses Kolmogorov-Smirnov (K-S) distance to
detect if a model has used/forgotten a query dataset. Using the K-S distance
we can obtain statistics about the output distribution of a target model without
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Table 2. ACDC dataset results. The query dataset DQ is ACDC 3T. The training
dataset D∗ has different variants as listed below. The K-S distances are calculated with
Eq. 2. DC for defining ρ is ACDC 1.5T. Bold number in the table is the threshold.

Training dataset (D∗) ACDC 3T
%ACDC 1.5T ACDC 1.5T + % 3T

50% 75% 100% 10% 50% 100%

KS(r(TDQ|DQ
), r(TDQ|D∗)) 0.036 0.885 0.793 0.772 0.579 0.529 0.103

ρ 0.047 1.146 1.027 1.000 0.750 0.685 0.133

knowing the weights of the model. Since the model’s training data are unknown
we train new (shadow) models with the query dataset and another calibration
dataset. By comparing the K-S values we can ascertain if the training data
contain data from the query dataset even for the difficult case where data sources
can overlap. We showed experiments in classical classification benchmarks but
also classification problems in medical image analysis. We did not explore the
effect of the query dataset’s sample size but the cumulative distribution remains a
robust measure even in small sample sizes. Finally, extensions to segmentation or
regression tasks and further assessment whether differential-privacy techniques
help protect data remain as future work.
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