26 research outputs found

    Testate amoebae as a hydrological proxy for reconstructing water-table depth in the mires of south-eastern Australia

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAlthough it is well established that moisture availability in south-eastern Australia has been decreasing through time recently, the driver(s) of this trend are contentious, and our understanding of any drivers is limited by a relatively short historic record. Testate amoebae have been widely used to reconstruct peatland hydrology in the Northern Hemisphere, but in the Southern Hemisphere research is still needed to assess their proficiency as a palaeohydrological proxy and to develop robust transfer functions. Here we examine the ecology of testate amoebae in several high altitude mires in south-eastern Australia and present the first transfer function for the continent. Euglypha tuberculata type, Centropyxis platystoma type and Assulina muscorum were the most common taxa in our modern samples. Water-table depth was the primary environmental variable determining testate amoebae assemblages and therefore transfer functions were developed for this ecological factor. We found that the performance of various all-species and species-pruned transfer functions were statistically robust, with R2 values of around 0.8 and Root Mean Squared Error of Prediction (RMSEP) values of about 7 cm. All cross-validation methods (leave-one-out RMSEP, cluster-bootstrap RMSEP, segment-wise RMSEP and leave-one-site-out RMSEP from all-species and species-pruned transfer functions) suggested that the Modern Analogue Technique (MAT) was the best performing transfer function, with negligible bias evident from un-even sampling and spatial autocorrelation. We also used a new approach to evaluate the importance of taxa and the performance of our transfer functions using species-pruned methods. Our results suggest that the all-species MAT, with an RMSEP of 5.73 and R2 of 0.86, provides the best reconstruction of water-table depth across our sites in south-eastern Australia.Australian National Universit

    Was there a '4.2ka event' in Great Britain and Ireland? Evidence from the peatland record

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Palaeoenvironmental and archaeological data from several regions around the world show evidence of a multi-centennial climatic event occurring approximately 4200cal yr BP (4.2ka). Whilst the climatic change and/or impact of the 4.2ka event is clear in certain regions, such as western Asia, evidence for the event has yet to be fully evaluated in northwest Europe. This study presents high-resolution, multi-proxy palaeoclimate records from sites in Northern Ireland, ideally located for an objective examination of the nature of the event in Great Britain and Ireland within the broader context of mid-Holocene climate change c. 6.5-2.5ka. The peatlands of northwest Europe possess considerable potential for the examination of climatic change in the North Atlantic region, demonstrated by the range of palaeohydrological proxy data generated during this study (peat humification, plant macrofossil and testate amoebae analyses) supported by a high-resolution chronology (including comprehensive AMS 14 C and tephrochronology). The inter-site testate amoebae reconstructions appear coherent and were combined to produce a regional climatic record, in marked contrast to the plant macrofossil and peat humification records that appear climatically complacent. The testate amoebae reconstruction, however, provides no compelling evidence for a 4.2ka event signal and is consistent with previously reported studies from across northwest Europe, suggesting the origin and impact of this event is spatially complex. © 2013 Elsevier Ltd.This research was carried out while T.P.R. held a UK Natural Environment Research Council studentship (NE/G524328/1) at the University of Exeter.

    Salt-Enrichment Impact on Biomass Production in a Natural Population of Peatland Dwelling Arcellinida and Euglyphida (Testate Amoebae)

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordUnicellular free-living microbial eukaryotes of the order Arcellinida (Tubulinea; Amoebozoa) and Euglyphida (Cercozoa; SAR), commonly termed testate amoebae, colonise almost every freshwater ecosystem on Earth. Patterns in the distribution and productivity of these organisms are strongly linked to abiotic conditions—particularly moisture availability and temperature—however, the ecological impacts of changes in salinity remain poorly documented. Here, we examine how variable salt concentrations affect a natural community of Arcellinida and Euglyphida on a freshwater sub-Antarctic peatland. We principally report that deposition of wind-blown oceanic salt-spray aerosols onto the peatland surface corresponds to a strong reduction in biomass and to an alteration in the taxonomic composition of communities in favour of generalist taxa. Our results suggest novel applications of this response as a sensitive tool to monitor salinisation of coastal soils and to detect salinity changes within peatland palaeoclimate archives. Specifically, we suggest that these relationships could be used to reconstruct millennial scale variability in salt-spray deposition—a proxy for changes in wind-conditions—from sub-fossil communities of Arcellinida and Euglyphida preserved in exposed coastal peatlands.Natural Environment Research Council (NERC

    The 5.2 ka climate event: Evidence from stable isotope and multi-proxy palaeoecological peatland records in Ireland

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Evidence for a major climate event at 5.2 ka has been reported globally and is associated with considerable societal disruption, but is poorly characterised in northwest Europe. This event forms part of a broader period of re-organisation in the Earth's ocean-atmosphere circulation system between 6 and 5 ka. This study tests the nature and timing of the event in northwest Europe, a region highly sensitive to change in meridional overturning circulation and mid-latitude westerly airflow. Here we report three high-resolution Irish multi-proxy records obtained from ombrotrophic peatlands that have robust chronological frameworks. We identify the 5.2 ka event by a sustained decrease in ÎŽ 18 O cellulose at all three sites, with additional and parallel changes in ÎŽ 13 C cellulose and palaeoecological (testate amoebae, plant macrofossil and humification) data from two sites in northern Ireland. Data from Sluggan Moss demonstrate a particularly coherent shift towards wetter conditions. These data support the hypothesis that the event was caused by a prolonged period of positive North Atlantic Oscillation conditions, resulting in pervasive cyclonic weather patterns across northwest Europe, increasing precipitation over Ireland.This research was carried out while T.P.R. held UK Natural Environment Research Council studentship at the University of Exeter (NE/G524328/1) and T.J.D held a studentship at the University of Southampton tied to the NERC RAPID Programme (NER/T/S/2002/00460). Radiocarbon support was provided by the NERC 14C Steering Committee (Allocation No.: 1523.0910), the NERC RAPID Programme and the Irish Quaternary Association via the IQUA Bill Watts 14Chrono award

    Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America

    Get PDF
    Peatlands are an important component of the Holocene global carbon (C) cycle and the rate of C sequestration and storage is driven by the balance between net primary productivity and decay. A number of studies now suggest that climate is a key driver of peatland C accumulation at large spatial scales and over long timescales, with warmer conditions associated with higher rates of C accumulation. However, other factors are also likely to play a significant role in determining local carbon accumulation rates and these may modify past, present and future peatland carbon sequestration. Here, we test the importance of climate as a driver of C accumulation, compared with hydrological change, fire, nitrogen content and vegetation type, from records of C accumulation at three sites in northeastern North America, across the N-S climate gradient of raised bog distribution. Radiocarbon age models, bulk density values and %C measurements from each site are used to construct C accumulation histories commencing between 11,200 and 8000cal. years BP. The relationship between C accumulation and environmental variables (past water table depth, fire, peat forming vegetation and nitrogen content) is assessed with linear and multivariate regression analyses. Differences in long-term rates of carbon accumulation between sites support the contention that a warmer climate with longer growing seasons results in faster rates of long-term carbon accumulation. However, mid-late Holocene accumulation rates show divergent trends, decreasing in the north but rising in the south. We hypothesise that sites close to the moisture threshold for raised bog distribution increased their growth rate in response to a cooler climate with lower evapotranspiration in the late Holocene, but net primary productivity declined over the same period in northern areas causing a decrease in C accumulation. There was no clear relationship between C accumulation and hydrological change, vegetation, nitrogen content or fire, but early successional stages of peatland growth had faster rates of C accumulation even though temperatures were probably lower at the time. We conclude that climate is the most important driver of peatland accumulation rates over millennial timescales, but that successional vegetation change is a significant additional influence. Whilst the majority of northern peatlands are likely to increase C accumulation rates under future warmer climates, those at the southern limit of distribution may show reduced rates. However, early succession peatlands that develop under future warming at the northern limits of peatland distribution are likely to have high rates of C accumulation and will compensate for some of the losses elsewhere

    Widespread Biological Response to Rapid Warming on the Antarctic Peninsula

    Get PDF
    Recent climate change on the Antarctic Peninsula is well documented [1-5], with warming, alongside increases in precipitation, wind strength, and melt season length [1, 6, 7], driving environmental change [8, 9]. However, meteorological records mostly began in the 1950s, and paleoenvironmental datasets that provide a longer-term context to recent climate change are limited in number and often from single sites [7] and/or discontinuous in time [10, 11]. Here we use moss bank cores from a 600-km transect from Green Island (65.3°S) to Elephant Island (61.1°S) as paleoclimate archives sensitive to regional temperature change, moderated by water availability and surface microclimate [12, 13]. Mosses grow slowly, but cold temperatures minimize decomposition, facilitating multi-proxy analysis of preserved peat [14]. Carbon isotope discrimination (Δ(13)C) in cellulose indicates the favorability of conditions for photosynthesis [15]. Testate amoebae are representative heterotrophs in peatlands [16-18], so their populations are an indicator of microbial productivity [14]. Moss growth and mass accumulation rates represent the balance between growth and decomposition [19]. Analyzing these proxies in five cores at three sites over 150 years reveals increased biological activity over the past ca. 50 years, in response to climate change. We identified significant changepoints in all sites and proxies, suggesting fundamental and widespread changes in the terrestrial biosphere. The regional sensitivity of moss growth to past temperature rises suggests that terrestrial ecosystems will alter rapidly under future warming, leading to major changes in the biology and landscape of this iconic region-an Antarctic greening to parallel well-established observations in the Arctic [20].This research was funded by the UK Natural Environment Research Council (NERC) Antarctic Funding Initiative grant 11/05 (NE/H014896/1) held by D.J.C., D.A.H., P.C., and H.G. P.C., D.A.H., and J.R. contribute to the BAS “Polar Science for Planet Earth” research program. Radiocarbon analyses were supported by allocation number 1605.0312 from the NERC Radiocarbon Facility, East Kilbride. We gratefully acknowledge Professor Melanie Leng at the NERC Isotope Geosciences Laboratory for assistance with isotope measurements and Nicole Sanderson at the University of Exeter for assistance with 210Pb age modeling. Sample collection was supported by HMS Protector and HMS Endurance

    Quantifying the effect of testate amoeba decomposition on peat-based water-table reconstructions

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Testate amoebae are a widely-used tool for palaeohydrological reconstruction from peatlands. However, it has been observed that weak idiosomic siliceous tests (WISTs) are common in uppermost peats, but very rarely found as subfossils deeper in the peat profile. This taphonomic problem has been noted widely and it has been established that WISTs disaggregate and/or dissolve in the low pH condition of ombrotrophic peatlands. Here we investigate the effect of this taphonomic problem on water-table reconstructions from thirty European peatlands through the comparison of reconstructions based on all taxa and those with WISTs removed. In almost all cases the decomposition of WISTs does not introduce discernible bias to peatland water-table reconstructions. However, some discrepancy is apparent when large abundances of Corythion-Trinema type are present (9−12 cm deviation with 50–60% abundance of this particular taxon). We recommend that WISTs should be removed before carrying out water-table reconstructions, and that the minimum count of testate amoebae per sample should exclude WISTs to ensure the development of robust reconstructions

    Widespread drying of European peatlands in recent centuries

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record Climate warming and human impacts are thought to be causing peatlands to dry,potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope. Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and continental Europe to examine changes in peatland surface wetness during the last 2000 years. 60% of our study sites were drier during the period CE 1800-2000 than they have been for the last 600 years; 40% of sites were drier than they have been for 1000 years; and 24% of sites were drier than they have been for 2000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary between regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.Natural Environment Research Council (NERC

    Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    Get PDF
    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 degrees C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R-2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAAT(peat) (degrees C) = 52.18 x MBT'(5me) - 23.05 (n = 96, R-2 = 0.76, RMSE = 4.7 degrees C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (similar to 4.7 degrees C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (similar to 15.2 kyr), we demonstrate that MAAT(peat) yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAAT(peat) to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate. (C) 2017 The Authors. Published by Elsevier Ltd
    corecore