
 1 

Testate amoebae as a hydrological proxy for reconstructing 1 

water-table depth in the mires of south-eastern Australia 2 

Xianglin Zheng1, Matthew J. Amesbury2, Geoffrey Hope3, Len F. Martin1 and Scott D. Mooney1* 3 

 4 

1 School of Biological, Earth & Environmental Sciences, University of New South Wales, Australia 5 

2 Geography, College of Life and Environmental Sciences, University of Exeter, UK 6 

3 Department of Archaeology and Natural History, Australian National University, Australia 7 

*Corresponding author: s.mooney@unsw.edu.au 8 

Abstract: 9 

 10 

Although it is well established that moisture availability in south-eastern Australia has been 11 

decreasing through time recently, the driver(s) of this trend are contentious, and our understanding 12 

of any drivers is limited by a relatively short historic record. Testate amoebae have been widely used 13 

to reconstruct peatland hydrology in the Northern Hemisphere, but in the Southern Hemisphere 14 

research is still needed to assess their proficiency as a palaeohydrological proxy and to develop 15 

robust transfer functions. Here we examine the ecology of testate amoebae in several high altitude 16 

mires in south-eastern Australia and present the first transfer function for the continent. Euglypha 17 

tuberculata type, Centropyxis platystoma type and Assulina muscorum were the most common taxa 18 

in our modern samples. Water-table depth was the primary environmental variable determining 19 

testate amoebae assemblages and therefore transfer functions were developed for this ecological 20 

factor. We found that the performance of various all-species and species-pruned transfer functions 21 

were statistically robust, with R2 values of around 0.8 and Root Mean Squared Error of Prediction 22 

(RMSEP) values of about 7 cm. All cross-validation methods (leave-one-out RMSEP, cluster-bootstrap 23 

RMSEP, segment-wise RMSEP and leave-one-site-out RMSEP from all-species and species-pruned 24 

transfer functions) suggested that the Modern Analogue Technique (MAT) was the best performing 25 

transfer function, with negligible bias evident from un-even sampling and spatial autocorrelation. 26 

We also used a new approach to evaluate the importance of taxa and the performance of our 27 

transfer functions using species-pruned methods. Our results suggest that the all-species MAT, with 28 

an RMSEP of 5.73 and R2 of 0.86, provides the best reconstruction of water-table depth across our 29 

sites in south-eastern Australia. 30 
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Introduction 35 

 36 

The instrumental record of rainfall in south-eastern Australia is relatively short (~110 years) but 37 

shows a number of significant droughts including the Millennium Drought (1996-2010), the World 38 

War II Drought (1937-1945) and the earlier Federation Drought (1895-1902) (Timbal and Fawcett, 39 

2013). A long-term decline in rainfall in south-eastern Australia is also apparent across the last 60 40 

years (Australian Bureau of Meteorology, 2016) and this has been especially true for autumn or 41 

winter rainfall (Delworth and Zeng, 2014). It has been suggested that this trend, or the length and/or 42 

severity of these droughts, might represent or be exaggerated by anthropogenic climate change 43 

(Delworth and Zeng, 2014; Timbal and Fawcett, 2013). 44 

Verdon-Kidd and Kiem (2009) demonstrated that different large-scale drivers influenced the spatial 45 

extent of these droughts across the Australian continent, however the relatively short instrumental 46 

record limits a complete understanding of this variability (CSIRO, 2010). A better understanding of 47 

the frequency, trends and drivers of rainfall obviously requires longer records than are available 48 

using instrumental data. This has recently been addressed using a network of drought-sensitive tree-49 

ring chronologies (and one coral record), resulting in the Australian and New Zealand summer 50 

drought atlas (Palmer et al., 2015), however this also only extends to AD 1500. 51 

Several other proxies sensitive to moisture are available in south-eastern Australia, including peat 52 

humification, pollen, speleothems and lake, river and dune geomorphology (Kemp and Spooner, 53 

2007; Wilkins et al., 2013; McGowan et al., 2009; Gergis et al., 2012; Jones et al., 2001; Black et al., 54 

2008; Ayliffe et al., 1998; Kemp and Rhodes, 2010). However, while longer, these records often only 55 

provide qualitative observations of moisture availability. Lake level reconstructions (Wilkins et al., 56 

2013; Bowler and Hamada, 1971; Harrison, 1993) are perhaps the most widely used palaeo-57 

environmental proxies of moisture availability in the region but their temporal resolution are often 58 

too coarse to identify individual drought events. Transfer functions between pollen and rainfall have 59 

been tested in south-eastern Australia (Cook and van der Kaars, 2006) but have not generated any 60 

further reconstruction. 61 

Testate amoebae, one of only a few moisture sensitive proxies, have been used extensively in the 62 

Northern Hemisphere for quantifying peatland water-table depth (WTD) (Mitchell et al., 2008; 63 

Amesbury et al., 2016). WTD is thought to be a reliable moisture index, and in comparison with 64 

moisture content, is less susceptible to short-term variability (Charman et al., 2007). Research 65 

comparing instrumental hydrological records and reconstructed WTD based on testate amoebae by 66 

Swindles et al. (2015) demonstrated that the relationships have sufficient strength to allow 67 

consideration of change in moisture status. 68 

There has been limited research on testate amoebae in Australia, with only two publications on their 69 

modern ecology (Meisterfeld and Tan, 1998; Bamforth, 2015). In New Zealand research is also 70 

relatively sparse (McGlone and Wilmshurst, 1999; Hazell, 2004; Charman, 1997; Bamforth, 2015), 71 

although a WTD reconstruction has been published, despite issues with preservation (Wilmshurst et 72 

al., 2003). 73 

Notably, most testate amoebae research in the Northern Hemisphere has been conducted in 74 

ombrotrophic peatlands (Payne and Mitchell, 2007), where WTD reflects a balance between rainfall 75 
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and evaporation. Ombrotrophic mires are exceedingly rare in south-eastern Australia (Whinam et al., 76 

2003), as most organic deposits in the region are minerotrophic, topogenous fens such that they 77 

receive water and other allochthonous materials from within the catchment. This characteristic 78 

means that standard testate amoebae laboratory protocols (Barnett et al., 2013; Charman et al., 79 

2010; Booth et al., 2010) result in difficult preparations and low total counts, which are potentially 80 

inappropriate for statistical analysis. These problems are common in the analysis of testate amoebae 81 

in minerotrophic peatlands (fens), salt marshes and other near-coastal sediments (Charman et al., 82 

2010; Swindles et al., 2016; Payne, 2011). Furthermore, regional variations in testate amoebae 83 

community composition mean that any derived transfer function is most applicable to the spatial 84 

extent of the modern calibration set.  Some taxa are exclusive to the Southern Hemisphere while 85 

certain taxa are Gondwanic, such as Certesella certesi and Apodera vas (van Bellen et al., 2014; 86 

Smith et al., 2008) therefore it is necessary to build a south-eastern Australian regional transfer 87 

function for further reconstruction. 88 

Juggins (2013) noted that any palaeo-environmental reconstruction requires preliminary research to 89 

demonstrate that the variable of interest is ecologically important, however this is sometimes 90 

overlooked. In order to test if testate amoebae can be used as a quantitative proxy for moisture 91 

availability in south-eastern Australia, this research aimed to: (1) explore the ecology of testate 92 

amoebae in south-eastern Australia; (2) determine if a significant relationship exists between testate 93 

amoebae community composition and WTD; and, (3) generate a transfer function between testate 94 

amoebae and WTD for south-eastern Australia. The research is hence fundamental to the future use 95 

of any transfer function between testate amoebae and WTD in south-eastern Australia. 96 

 97 

Field and Laboratory Methods: 98 

 99 

We first sampled a wide distribution of mires in south-eastern Australia but quickly discovered that 100 

standard protocols for the concentration of testate amoebae from minerotrophic sediments left silt-101 

sized detrital material, which obscured the tests on the slides and made counting extremely difficult. 102 

We then focused our sampling in relatively high altitude mires in southern New South Wales (NSW) 103 

and the Australia Capital Territory (ACT) (Fig. 1; Table 1). The ACT sites (Blundells Flat, Snowy Flat, 104 

Coronet Creek and Tom Gregory Bog) were sampled in October 2015 and Ginini Flat and the NSW 105 

mires in Kosciuszko National Park (Rennix Gap, Digger Creek and Pengillys Bog) were sampled in 106 

April 2016. 107 

Mires in south-eastern Australia are characterised by low free surface water and low nutrient status 108 

(Hope et al., 2012). Almost all the sites we sampled are topogeneous mires, occupying the base of 109 

slopes and valley floors and they receive water via slope runoff and groundwater flows. Nonetheless 110 

we chose locations for sampling within the mires with more ombrotrophic characteristics. All 111 

sampled sites include patches of Sphagnum-dominated vegetation, with the exception of Blundells 112 

Flat which is better characterised as a relatively low altitude Carex (Cyperaceae) fen, nonetheless 113 

they are often dominated by Empodisma (Restionaceae), Epacris (Ericacaeae), Richea (Ericaceae) or 114 

Carex (Cyperaceae) (Table1).  115 
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(insert Fig 1 near here) 116 

(insert Table 1 near here) 117 

 118 

To minimize the effect of clumped data and uneven sampling (Telford and Birks, 2011; Payne et al., 119 

2012), it is better to sample evenly at individual sites and across environmental gradients of interest. 120 

Therefore between 9 and 12 samples were taken at each site, with the exception of Coronet Creek, 121 

where we took 1 sample, as the site is small and homogenous with a constant WTD. At all other sites 122 

we took samples in 3 or 4 transects which covered the range of WTD, often from the top of the 123 

hummocks to the lawn or the pool of the hollow. In all cases the peat or moss surface was taken as 124 

zero depth, with negative WTD values representing a subsurface water-table and positive values 125 

standing water. Our modern sediment samples were collected from 5-10 cm depth. ‘Modern’ 126 

samples from Sphagnum-dominated sites are usually taken from below the uppermost living moss as 127 

the community composition is more likely to be consistent with the sub-fossil testate amoeba 128 

(Woodland et al., 1998; Booth et al., 2010). For the more minerogenic sites or samples we also 129 

sampled from 5-10 cm but recognise that these samples may be older, depending on the 130 

sedimentation rate, and that the testate amoeba community potentially represents altered WTD. 131 

When we sampled from within pools, the top 5cm of the sediment was kept. We measured WTD 132 

once, which is considered representative of relative moisture availability (Holden et al., 2011; 133 

Woodland, 1996; Amesbury et al., 2013), after the water level stabilised in an open pit or as standing 134 

water in the pools. We also took water samples from this pit or from the pools for laboratory 135 

analysis of pH and electrical conductivity (EC). Moisture content was measured as mass lost after 24 136 

hours in a 105oC fan forced oven. 137 

The majority of our modern samples had a high organic content and, as mentioned, standard 138 

protocols for the concentration of testate amoebae resulted in slides dense with organic and 139 

inorganic particles, which potentially obscured taxa. A revised methodology, adapted from the mild-140 

alkali method of Charman et al. (2010) incorporating detergent and acetone, was developed to 141 

mitigate this issue (Supplementary Table 1) and to minimise damage to the testate amoebae. We 142 

used detergent to aid in the dispersal of organic matter, as is sometimes used for palynology (Faegri 143 

and Iversen, 1964) and we added acetone to our protocol to increase the interaction between the 144 

mild alkali treatment (NaOH) and the organic matter. The addition of acetone increases the removal 145 

of humic acids and the solubility of organic matter (Jason Harper pers. comm.). We used three 146 

nested sieves (250, 215 and 20m), with the top sieve used as a cushion to reduce the strength of 147 

the flushing water. The material retained between the 215 and 20μm sieves was used for the 148 

quantification of the testate amoebae. 149 

A minimum of 100 individual tests was counted in each sample (with the exception of sample TGB1, 150 

where only 98 individuals were quantified) as this has been suggested as sufficient for transfer 151 

function development (Payne and Mitchell, 2009; Charman et al., 2010) and each taxon was 152 

converted into a percentage of the total count. Two samples (BF3 and BF7) were excluded from the 153 

dataset as they had an extremely low concentration of testate amoebae. Identification of the testate 154 

amoebae followed Sullivan and Booth (2007) which was based on Charman et al. (2000). Southern 155 

Hemisphere endemic taxa were identified using Patagonian references (van Bellen et al., 2014) 156 

however in our samples C. martiali have no ridges around the neck, which is slightly different to 157 
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those found in Patagonia. We also recorded Nebela vitraea type as Argynnia dentistoma type, and 158 

Nebela griseola type as Physochila griseola type (Amesbury et al., 2016). One undescribed taxon was 159 

identified in our samples and included in the database as ‘Nebela sp1’ (for a picture and details see 160 

Supplementary Fig. 1). 161 

 162 

 163 

Data analysis: 164 

 165 

Prior to data analysis, rare taxa (with a maximum abundance less than 5%) and those that occurred 166 

in less than 5 samples were removed (Amesbury et al., 2013). Ordination analyses were carried out 167 

using the ‘vegan’ package (Oksanen et al., 2015) in R version 3.0.2 (R Core Team, 2013) to explore 168 

the data and the relationship between the environmental factos (57 measurements of WTD, 169 

moisture content, EC, pH) and testate amoebae. We first used detrended correspondence analysis 170 

(DCA) to analyse the gradient length of the primary ordination axis to determine whether the 171 

response curve was linear or unimodal (Birks et al., 2012). Our gradient length (3.54 SD) suggested 172 

that the underlying response curve for testate amoebae was unimodal, and hence canonical 173 

correlation analysis (CCA) was selected for further analysis. Monte Carlo permutations (1000 174 

iterations) were used to test statistical significance. Stepwise regression and variation partition were 175 

conducted to evaluate the explanatory power of the environmental variables and to identify the 176 

primary determinant of the testate amoebae assemblage. We also used a ratio of the first 177 

constrained to the first unconstrained eigenvalue (λ1/ λ2) in our CCA with only one explanatory 178 

variable to assess the explanatory power of the environmental variables (Juggins, 2013). 179 

A total of 68 samples were available for the development of the transfer functions. We used the 180 

‘rioja’ package (Juggins, 2014) in R to build transfer functions, including Weighted Average (WA), 181 

Weighted Average with tolerance down-weighting (WA.Tol), Weighted Average Partial Least Squares 182 

(WAPLS), Modern Analogue Technique (MAT) and Maximum Likelihood (ML). We used the 183 

identifiers ‘.cla’ and ‘.inv’ for classical and inverse deshrinking methods, respectively, for WA and 184 

WA.Tol.  185 

In addition to these ‘all-species’ transfer functions, based on the entire dataset (minus rare taxa), we 186 

also developed species-pruned transfer functions. This follows, Juggins et al. (2015), who described 187 

excluding non-informative taxa, which degrade predictive ability, based on the importance of 188 

individual taxa as predictors of the variable of interest, in this case WTD. For this, an importance 189 

index was calculated for the taxa based on the “randomPTF” function in the “rioja” package. We 190 

used the absolute value of the difference between the prediction errors for the modified and 191 

original out-of-bag data instead of just the difference, because some of differences were found to be 192 

negative. It should be noted that the taxa importance index can only be used to compare taxa within 193 

the same transfer function. Backward stepwise selection was used to remove non-informative taxa 194 

according to the importance index and a transfer function was derived with the lowest root mean 195 

squared error of prediction (RMSEP), following Juggins et al. (2015). For simplicity, the lowest RMSPE 196 

was chosen as the criteria, without considering statistical significant difference among adjacent data 197 

points. 198 
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We also removed outlying samples before deriving our final transfer functions: outliers were 199 

identified as samples with a residual value >20% of the range of WTD across our sites (14 cm), 200 

following the commonly recently applied (Swindles et al., 2009; Amesbury et al., 2013; 2016) data-201 

screening method of Birks et al. (1990). 202 

The mathematical basis and the use of different transfer functions have been discussed in detail by 203 

Birks et al. (2012). The performance of our models was initially evaluated using RMSEP with leave-204 

one-out (LOO) cross validation, R2, average bias (Ave.Bias) and maximum bias (Max.Bias). Max.Bias is 205 

the largest absolute value of the Ave.Bias during the cross-validation cycle and can represent the 206 

over- or under-estimation tendency along particular parts of the gradient. As LOO and bootstrap 207 

cross-validation may underestimate RMSEP, other statistical evaluations, including leave-one-site-208 

out RMSEPLOSO (Payne et al., 2012), segment-wise RMSEPSw (Telford and Birks, 2011) and spatial 209 

autocorrelation analysis were considered following recommendations by Amesbury et al. (2013). 210 

Spatial autocorrelation analysis was carried out using the ‘palaeoSig’ package (Telford, 2015). Due to 211 

the clustered spatial distribution of our testate amoebae dataset, traditional bootstrap methods are 212 

inappropriate; therefore cluster-bootstrap RMSEPCB was adopted (Payne et al., 2012).  213 

 214 

Results: 215 

1. Ecology of testate amoebae  216 

 217 

Supplementary Table 2 provides a list of the testate amoebae that we identified across all sites.  A 218 

total of 50 taxa were identified in the south-eastern Australian sites sampled and 10 of these were 219 

considered rare using our criteria. The most common taxa encountered were Pseudodifflugia fulva 220 

type, Centropyxis platystoma type, Euglypha tuberculate type, P. griseola type, Trinema/Corythion 221 

type, Heleopera sylvatica, Assulina muscorum and Cyclopxis arcelloides type (Fig. 2).  We found some 222 

taxa that are exclusive to the Southern Hemisphere and others, such as Certesella martiali and 223 

Apodera vas, that have a distinctly Gondwanic distribution (van Bellen et al., 2014), although they 224 

have been found just beyond these land masses, presumably associated with dispersal (e.g. Smith et 225 

al., 2008; Heger et al., 2011). 226 

The CCA identified that the environmental variables account for 18% of the total variance 227 

(Supplementary Table 3, with constrained proportion in Supplementary Table 3a). CCA axis 1 228 

(eigenvalue = 0.40) and CCA axis 2 (eigenvalue = 0.20) are both significant (P <0.001) using Monte 229 

Carlo permutations, and account for 87% of explained variance (constrained). The principal axis (CCA 230 

1) is clearly associated with WTD, suggesting that WTD is the primary environmental variable 231 

controlling testate amoebae community composition (Fig. 3). This means that the distribution of 232 

taxa along CCA 1 is very similar to the rank order of optima WTD of the testate amoebae derived 233 

from a WA model (Fig. 4).  234 

High values on CCA 1 represent dry conditions (high WTD), and hence dry samples (e.g. CC, TCB7, 235 

DC4) and dry-indicating taxa (e.g. Trigonopyxis arcula type, Cyclopyxis arcelloides type and A. 236 
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muscorum) appear at the right edge of CCA 1, whereas low values on CCA 1 represent wet microsites 237 

(e.g. BF5, BF6 and RG8) and wet-indicating taxa (e.g. Centropyxs ecornis type and Nebela retorta). 238 

Stepwise regression also identified WTD and EC as significant explanatory variables. Variance 239 

partitioning found that WTD contributed the most to the explained variance with 57.08% and EC 240 

contributed 22.70%. The joint contribution between WTD and the other environmental variables (EC, 241 

moisture content and pH) ranged from 0 to 2.47%, indicating the contribution of WTD (57.08%) is 242 

mostly independent. The ratio λ1/ λ2 for WTD was close to 1 (0.95), and for EC it was 0.31. These 243 

results clearly support the hypothesis that there is a significant relationship between WTD and 244 

testate amoebae, with little confounding interaction between WTD and the other environmental 245 

variables. They strongly support the development of a transfer function between WTD and testate 246 

amoebae. 247 

The relationship between different taxa and WTD was further assessed using an importance index 248 

(Supplementary Fig. 2) (Juggins et al., 2015). The numeric value of the importance index, describing 249 

how important a taxon is (with larger values describing more important taxa), may be slightly 250 

different for each run as the index is calculated by permutation for each run. Nonetheless, this 251 

importance index can provide a new approach to rank the relative importance for these taxa. A. 252 

muscorum, C. platystoma type, C. arcelloides type, Difflugia pritist type and P. fulva type were 253 

identified as the most important taxa responding to WTD across the five different transfer functions, 254 

except ML. 255 

 256 

(insert Fig. 2 near here) 257 

(insert Fig. 3 near here) 258 

(insert Fig. 4 near here) 259 

 260 

 261 

2. Transfer functions 262 

  263 

The performance of the common transfer functions are shown in Table 2, including results based on 264 

LOO and cluster-bootstrap cross-validation. Their performance was improved (to an R2 above 0.8) 265 

after removal of outlier samples, with RMSEP reduced from ~ 9 cm to ~7 cm. WAPLS with one 266 

component was identified as the optimal WAPLS, which is exactly the same as WA.inv (Birks, 2012) 267 

and so was omitted from further analyses (Table 2). Under LOO cross-validation (Table 2), MAT (k=4), 268 

WA.cla and WA.inv were the three best transfer functions based on RMSEPLOO and R2 while MAT, 269 

WA.cla and ML were the three best transfer functions under cluster-bootstrap cross-validation 270 

(Supplementary Table 4). Based on these results WA.cla was chosen to represent the weighted 271 

averaging family and MAT and ML were analysed further to evaluate a different family-type of 272 

transfer functions. The results based on cluster-bootstrap were identical to those based on LOO and 273 

will not be discussed further. It should be noted that traditional bootstrapping suggested that ML 274 
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outperformed MAT (details not shown). Scatter plots in Supplementary Fig. 3 show almost all 275 

observations fell within the threshold for removing outliers (14 cm). 276 

 277 

(insert Table 2 near here) 278 

 279 

All RMSEP (LOO, SW and LOSO) values were considerably lower than the standard deviation of WTD 280 

(Table 2), suggesting that all models have an adequate predictive capacity. The ranges in Table 2 are 281 

comparable to those in Amesbury et al. (2013) and Payne et al. (2012). RMSEPSW are normally larger 282 

than RMSEPLOO (Table 2), and the difference between them ranged from -2 to 9%, which is similar to 283 

the range of RMSEPSW in Amesbury et al. (2013). All three models have relative lower RMSEP in the 284 

wet segments (WTD<30 cm), which has a higher frequency of samples, and higher RMSEP in the dry 285 

segments where samples were fewer (Supplementary Fig. 4). RMSEPLOSO are normally larger than 286 

RMSEPLOO for the transfer functions, suggesting that the transfer functions are influenced by the 287 

clustered nature of the testate amoebae dataset. The exception is MAT where RMSEPLOSO has a -8% 288 

decrease (Table 2) which suggests that in our dataset MAT does not suffer from this bias, a 289 

conclusion supported by the spatial autocorrelation analysis (Supplementary Fig. 5). 290 

Supplementary Fig. 5 shows the spatial autocorrelation among samples when removing samples 291 

randomly or within certain geographic neighbourhoods. If spatial autocorrelation is not a problem 292 

then the deletion of geographical neighbours should follow similar trajectories derived from random 293 

deletions, with dramatic declines in R2 normally found (Telford and Birks, 2011). R2 for WA.cla, MAT 294 

and ML always remained stable and closely followed the trend of random deletions when 295 

geographic neighbours were deleted. Therefore, in our dataset it seems there is negligible spatial 296 

autocorrelation for the developed transfer functions. 297 

In comparison to all-species RMSEPLOO, the performance of the species-pruned transfer functions 298 

(Table 3) are similar (using RMSEP and R2). A selection of optimal species-pruned transfer functions 299 

are shown in Fig. 5, from which it is clear that using only those taxa that were important to WTD had 300 

variable effects on RMSEP.  The optimal species-pruned MAT was developed with 17 taxa and is the 301 

best performing species-pruned transfer function, with the RMSEPLOO (5.97) larger than that of the 302 

all-species MAT (5.75). The species-pruned MAT suffered, however, from segment-wise bias with a 303 

considerable increase in RMSEPSW. In comparison, the species-pruned ML used almost all taxa, with 304 

only 10 taxa removed, but resulted in the worst performance. The species-pruned ML transfer 305 

function also had an unstable rank order of taxa importance when ‘randomPTF’ was run several 306 

times, whereas the other transfer functions had a relative stable ranked importance of taxa. 307 

 308 

(insert Table 3 near here)  309 

(insert Fig. 5 near here)  310 

 311 

 312 
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Discussion 313 

Ecology of testate amoebae in south-eastern Australia 314 

 315 

The most common testate amoebae in the peatlands in south-eastern Australia are C. arcelloides 316 

type, C. platystoma type and A. muscorum: this has some overlap with the common taxa found in 317 

New Zealand which also included A. muscorum but Charman (1997) and Wilmshurst et al. (2003) 318 

also commonly found Euglypha rotunda type and P. fulva type. E. rotunda type is one of the least 319 

common taxa in our samples, but E. tuberculata type was very common. C. aculeate type, C. ecornis 320 

type, Nebela barbata and Quadrulella symmetrica were also identified in our samples but were not 321 

found by Charman (1997) and Wilmshurst et al. (2003) in New Zealand, although both taxa have 322 

been previously identified in south-eastern Australia (Meisterfeld and Tan, 1998) and New Zealand 323 

(Bamforth, 2015). Alcodera cockayni has previously been identified in New Zealand (Charman, 1997; 324 

Wilmshurst et al., 2002) and Tasmania (Bamforth, 2015) but has not been encountered in (mainland) 325 

south-eastern Australia before. The presence of Q. symmetrica is likely to reflect the minerotrophic 326 

nature of these peatlands in Australia, as they are absent in truly rain-fed ombrotrophic bogs 327 

(Meisterfeld and Tan, 1998). Our identification of N. retorta was a first for Australia, but it has been 328 

reported in New Zealand (Bamforth, 2015). 329 

A. muscorum is common in both the Northern (Amesbury et al., 2016) and Southern Hemisphere 330 

(Charman, 1997; Wilmshurst et al., 2002; van Bellen et al., 2014) but other common taxa in the 331 

Northern Hemisphere, such as Archerella flavum and Amphitrema wrightianum, were absent in 332 

Patagonia (van Bellen et al., 2014) and south-eastern Australia (Meisterfeld and Tan, 1998) while A. 333 

wrightianum was discovered only in a few samples in New Zealand (Charman, 1997; Bamforth, 2015). 334 

Hyalosphenia subflava, found in sub-fossil samples in the Northern Hemisphere, but absent from 335 

modern analogues, were in both our modern surface samples and in Patagonia (van Bellen et al., 336 

2014). A. vas and C. martiali were the two most common Gondwana-specific taxa but may only have 337 

a limited distribution within the Gondwanic landmasses (Smith et al., 2008). 338 

The testate amoebae in our south-eastern Australian samples have similar moisture niches with 339 

those from other regions (Fig. 4). C. aculeate type and Arcella discoides type are invariability found in 340 

the wetter WTD samples (van Bellen et al., 2014; Swindles et al., 2014). A. muscorum, C. arcelloides 341 

type, H. subflava and T. arcula type are also commonly considered as dry indicators. One difference 342 

identified was E. tuberculata type and Trinema/Corythion type, which are generally associated with 343 

drier conditions (van Bellen et al., 2014) while they were intermediate-dry indicators in our research. 344 

 345 

Relationships between environmental variables and testate amoebae 346 

 347 

The CCA, stepwise regression and variation partition results all supported a strong, significant 348 

relationship between WTD and testate amoebae, and that WTD is the primary environmental 349 

variable controlling their community composition. Environmental variables explained 18% of the 350 

total variance, which is higher than the 9.1% explained in New Zealand (Charman, 1997) and in the 351 
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European dataset (Charman et al., 2007), but much lower than the 39% explained in fens in Turkey 352 

(Payne et al., 2008) and more than 50% explained in bogs in England (Woodland et al., 1998). There 353 

is large portion of taxon variance that remained unexplained in our samples, and this might be 354 

related to environmental variables that were not considered or to ecological variability of testate 355 

amoebae. 356 

It should be noted that although there is a significant statistical relationship between WTD and 357 

testate amoebae, it is possible that any reconstruction based on the variance of testate amoebae 358 

assemblages might fail to reflect the true variance of WTD.  Any reconstruction reflects the whole 359 

signal, in this case, everything that influences testate amoebae composition, including habitat, light, 360 

food availability etc. (Mitchell et al., 2008) rather than the independent signal alone (WTD). Juggins 361 

(2013) suggested one way to test if a variable is ecologically important is to compare the optimal 362 

rank of different taxa across different regions, because the biological response should not change if 363 

the reconstructed variable is important.  We found that the optimal WTD for different testate 364 

amoebae was similar to those in other regions. 365 

The importance index of the taxa (Supplementary Fig. 2) offers another useful insight into the 366 

relationship between individual taxa and WTD, in terms of relative importance rank for taxa.  Several 367 

taxa, such as A. muscorum, C. platystoma type, C. arcelloides type, D. pritist type and P. fulva were 368 

identified as the most important taxa relating to WTD. If these taxa were a significant component of 369 

the testate assemblage in a fossil assemblage then we could be more confident of any reconstructed 370 

WTD over that time period. This suggests that the degree of overlap between fossil taxa and highly 371 

ranked taxa in an importance index could be used to complement the confidence of reconstructed 372 

WTD. Our segment wise analyses (Supplementary Fig. 4) show that our prediction of WTD is less 373 

robust in drier segments, and hence we would need to be slightly more cautious about any palaeo-374 

environmental reconstruction in drier times. The instrumental comparison work by Swindles et al. 375 

(2015) leads to similar conclusions: there are likely to be times in any palaeo-environmental 376 

reconstruction of moisture based on testate amoebae when we can have more or less confidence in 377 

the results. 378 

Juggins (2013) also recommended avoiding reconstructing variables with a small independent 379 

component of the variance and, instead, to look at independent and shared variance by hierarchical 380 

partitioning or constrained ordination with all significant variables. We found that the shared 381 

component of variance ranged from 0 to 2.48% for WTD and the other environmental variables, and 382 

that WTD contributed more than a half (57.08%) of the explained partition. Finally, λ1/ λ2 is another 383 

useful index as a value greater than 1.0 indicates that a variable of interest can represent an 384 

important ecological gradient (Ter Braak and Smilauer, 1998). In our study λ1/ λ2 was 0.95 for WTD, 385 

which is higher than is often reported in published research (Juggins, 2013). 386 

Together these results suggest that testate amoebae are a sensitive proxy of WTD in south-eastern 387 

Australia and so they can potentially be used to reconstruct mire palaeohydrology in this region. 388 

 389 

Transfer functions 390 

 391 
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Leave-one-out (LOO) cross-validation is the most common method to evaluate the performance of 392 

different transfer functions. Another less common method is traditional bootstrap cross-validation, 393 

which although often performs worse than LOO, is thought to be more realistic (Birks et al., 2012). 394 

Due to the clustered nature of our dataset, cluster-bootstrap cross-validation (RMSEPCB) was tested 395 

in this research, as this addressed any bias in traditional bootstrap cross-validation, which suggested 396 

that ML outperformed MAT. As LOO and traditional bootstrap cross-validation are likely to give an 397 

over-optimistic evaluation, they were supplemented by segment-wise (RMSEPSW), leave-one-site-out 398 

(RMSEPLOSO) and spatial autocorrelation analysis (Amesbury et al., 2013). RMSEPLOSO and RMSEPCB 399 

(Table 2) confirmed that MAT was the best performing transfer function. This supports the claim 400 

that RMSEPLOSO is sufficient to distinguish biases related to clustered data by Payne et al. (2012). It 401 

seems that the transfer functions based on all species (except rare taxa) developed in this research 402 

were only negligibly affected by spatial autocorrelation (Supplementary Fig. 5). 403 

It has been argued that species-pruned models can increase the predictive robustness of transfer 404 

functions (Juggins et al. 2015), which is a sensible proposition as non-informative taxa are excluded. 405 

Our evaluation of the species-pruned transfer functions found that they performed similarly to the 406 

all-species transfer functions (Table 3). It should be noted however that in this study the all-species 407 

transfer functions were calculated after the removal of 10 rare taxa, and the further removal of the 408 

least 10 non-informative taxa did not improve RMSEP (Fig. 5). This implies that the strategy to 409 

remove rare species at the beginning for our all-species transfer functions was appropriate. Despite 410 

no great increase in predictive performance, the use of species-pruned models provided a useful 411 

consideration of the importance of taxa and their influence on the development of different transfer 412 

functions. 413 

In this study our RMSEPLOO, RMSEPSW, RMSEPLOSO, RMSEPCB results for all-species (except rare taxa) 414 

and species-pruned methods all suggest that the modern analogue technique (MAT) is the best 415 

transfer function. In previous studies MAT has rarely been the preferred model type, with weighted 416 

averaging-based models generally having the best performance (Hughes et al., 2006; Payne et al., 417 

2008; Amesbury et al., 2013; 2016). It is only usually when there is a strong spatial autocorrelation 418 

bias that MAT outperforms other model types (Telford and Birks, 2009). MAT is also sensitive to 419 

uneven sampling (Telford and Birks, 2011). In contrast, in this study MAT has an acceptable RMSEPSW, 420 

a decreased RMSEPLOSO (Table 2) and negligible spatial autocorrelation bias (Supplementary Fig. 5), 421 

suggesting the performance of MAT is not biased by spatial autocorrelation. Under the species-422 

pruned method, only the most important 18 informative-taxa were included for MAT, and this 423 

interplay between importance and rarity might be the reason why MAT is robust to spatial 424 

autocorrelation in this study. 425 

Other commonly applied model types performed poorly for this dataset. WA.cla might be over-fitted 426 

as 14 observations were removed during data-screening (Table 2).  Although ML is considered to be 427 

the most statistically-sound transfer function (Birks et al., 2012), robust to spatial autocorrelation 428 

and uneven sampling and less sensitive to the potential confounding effects of other environmental 429 

variables (Juggins et al., 2015), it also performed poorly. Notably, ML considers almost every taxa in 430 

the dataset as informative (Table 3), despite some of them being rare (<5 occurrences and max 431 

abundance <5%) and the optimal WTD for these rare taxa was not very stable. For better 432 

performance in south-eastern Australia ML may require a larger (modern) dataset. 433 
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It should be noted that the performance of MAT for the reconstruction of WTD might still suffer if 434 

there is considerable difference between the testate amoebae in modern samples and those 435 

recovered from sediment cores. In New Zealand Wilmshurst et al. (2003) identified such a disparity 436 

and this might potentially reflect the poor preservation of testate amoebae in Australasia or 437 

different assemblages under different moisture conditions. This means that consideration of this 438 

overlap (between modern and sub-fossil) is necessary, and other transfer functions, such as all-439 

species WA.cla or species-pruned WA.inv might be an alternative.  440 

 441 

 442 

Conclusions 443 

 444 

This research offers insight into the ecology of testate amoebae in south-eastern Australia and 445 

describes the development of transfer functions for the reconstruction of water-table depth (WTD). 446 

In conclusion: 447 

1. A total of 50 taxa were recorded in 68 samples from 8 high-altitude bogs and fens in south-eastern 448 

Australia. The most common taxa were E. tuberculata type, C. platystoma type, A. muscorum, 449 

Trinema/Corythion type and C. platystoma type. A. vas, both Gondwanic endemic taxa, were 450 

discovered in about half of our samples and we recorded the occurrence of N. retorta for the first 451 

time in Australia. 452 

2. WTD was the significant primary environmental variable determining the testate amoeba 453 

community composition. WTD contributed more than a half (57.08%) of the explained variance of 454 

the testate amoebae community, with little (0 to 2.48%) shared contribution with other 455 

environmental variables. A ratio of the first constrained to the first unconstrained eigenvalue in a 456 

canonical correlation analysis (λ1/ λ2) also suggested that WTD was an ecologically important 457 

variable. These results mean that we could confidently reconstruct a robust and reliable transfer 458 

function between testate amoebae and WTD.  459 

3. We developed all-species and species-pruned transfer functions and demonstrated a statistically 460 

sound performance, with R2 values of around 0.8 and RMSEP values of approximately 7cm. Results 461 

from all-species and species-pruned models suggest that the modern analogue technique (MAT) is 462 

the best transfer function, with negligible bias from uneven sampling and spatial autocorrelation. 463 

This transfer function is provided in the Supplementary Information. Although we advocate using all- 464 

(minus rare) species MAT as the recommended transfer function to reconstruct WTD in south-465 

eastern Australia, the species-pruned MAT transfer function also allows a useful consideration of the 466 

importance of each taxa of testate amoebae for WTD, and this can be used to better evaluate the 467 

performance of a transfer function in any palaeo-environmental reconstruction of WTD. 468 

 469 

 470 
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Figures:  
 

Figure 1: Location of sites (red circles) where modern samples were taken for developing the 

relationship between testate amoebae and water-table depth. ACT = Australian Capital Territory. For 

details on each site see Table 1. 

 

 

 

 

 

 

 

 

  

Figures tables and supplementary figs and tables



Figure 2: Abundance of testate amoebae in modern surface samples, shown as percentages of the 

total count. The y-axis represents the 68 modern samples from eight sites (see Table 1 for site 

details). Testate amoebae are ordered from “wet” on the left to “dry” on the right based on the 

optima from the weighted average (classical deshrinking WA.cla) transfer function (see also Figure 4). 

Water-table depth plot shows the measured water table value (cm) of each individual sample. 

 

 

 

 

 

 

 

 

 

 

  



Figure 3: CCA triplot for testate amoebae, samples and environmental variables (‘WTD’ = water-

table depth; pH; ‘EC’ = electrical conductivity; ‘Moisture’ = moisture content). Species are scaled 

proportional to eigenvalues. Names of testate amoebae taxa are shortened but are provided in full 

in Supplementary Table 2. Samples are identified numerically alongside the first name of the sites 

(BF = Blundells Flat; SF = Snowy Flat; TGB = Tom Gregory Bog; CC = Coronet Creek; GF = Ginini Flat; 

DC = Digger Creek; PB = Pengillys Bog; RG = Rennix Gap; see also Table 1). 

 

 

 

 

  



Figure 4: Optima and tolerances, representing the niche centres and breadths for testate amoebae 

(derived from the weighted average (classical deshrinking WA.cla) transfer function and leave-one-

out (LOO) cross validation). 

 

 

 

 

 

 

 

 

 

 

  



Figure 5: Selection of optimal species-pruned transfer functions for six model types (WA.inv, WA.cla, 

WA.Tol.inv, WA.Tol.cla, MAT and ML). Plots show the effect on root mean squared error of 

prediction (RMSEP) of gradually removing taxa, keeping those determined as important to the 

environmental variable of interest, water-table depth (see text for details). Dashed red lines show 

the number of taxa remaining in each optimised species pruned model. 

 

 

 

 

  



Table 1: Site details for the modern data set. 

 

 

Site name Latitude Longitude 
Elevation 
(m a.s.l) 

pH 
EC 

(µS/cm) 
No. 

samples 
Type 

Blundells Flat (BF) -35.32 148.83 762 6.64±0.53 91.14±11 9 Carex gaudichaudiana/Carex curta/Lythrum salicaria fen 

Snowy Flat (SF) -35.56 148.78 1609 5.59±0.33 23.85±12.73 9 Empodisma minus/Sphagnum cristatum/ Epacris paludosa shrub bog 

Tom Gregory Bog (TGB) -35.65 148.83 1024 5.7±0.44 54.56±19.74 9 Empodisma minus/Epacris  paludosa/Sphagnum cristatum shrub bog 

Coronet Creek (CC) -35.66 148.84 1102 7.07 39.6 1 Epacris paludosa/Empodisma minus/Sphagnum cristatum shrub bog 

Ginini Flat (GF) -35.52 148.77 1590 5.54±0.31 38.15±21.17 10 Sphagnum cristatum/Empodisma minus/Richea continentis shrub bog 

Digger Creek (DC) -36.38 148.48 1649 5.74±0.34 48.28±24.38 12 Empodisma minus/Sphagnum cristatum/Richea continentis shrub bog 

Pengillys Bog (PB) -36.38 148.41 1673 5.36±0.22 26.8±15.12 10 Sphagnum cristatum/Empodisma minus/Richea continentis shrub bog 

Rennix Gap (RG) -36.36 148.50 1582 5.6±0.22 38.93±19.29 10 Sphagnum cristatum/Empodisma minus/Richea continentis shrub bog 

 

 

 



Table 2: The performance of all-species transfer functions by leave-one-out (RMSEPLOO), leave-one-site-out (RMSEPLOSO) and segment-wise (RMSEPsw) cross 

validation methods, which were developed based on leave-one-out (RMSEPLOO) cross validation. Figures in parentheses for RMSEPLOO, R2
(LOO), Avg.Bias(LOO) 

and Max.Bias(LOO) are the statistical performance after data-screening. Figures in parentheses for RMSEPSW and RMSEP LOSO are the relative decrease or 

increase compared to corresponding RMSEPLOO or RMSEPCB after data-screening. SD is the standard deviation of all WTD included in each model after data-

screening. 

 

Transfer function RMSEPLOO R
2

(LOO) Avg.Bias(LOO) Max.Bias(LOO) RMSEPSW RMSEPLOSO 
No. samples 

removed 
SD 

WA.inv 9 (6.53) 0.73 (0.82) 0.37 (0.3) 24.42 (10.78) 6.73 (0.03) 6.65 (0.02) 7 15.50 

WA.cla 9.89 (6.22) 0.74 (0.85) 0.46 (0.37) 17.97 (8.75) 6.16 (-0.01) 6.99 (0.12) 14 15.79 

WA.Tol.inv 8.55 (6.77) 0.76 (0.8) 0.63 (0.58) 23.96 (12.07) 7.2 (0.06) 6.96 (0.03) 4 15.36 

WA.Tol.cla 9.03 (6.84) 0.76 (0.82) 0.76 (0.8) 18.68 (7.91) 6.9 (0.01) 8.25 (0.21) 8 15.83 

WAPLS(comp1) 9 (6.53) 0.73 (0.82) 0.36 (0.3) 24.42 (10.78) 6.73 (0.03) 6.65 (0.02) 7 15.50 

MAT(k=4) 8.25 (5.73) 0.78 (0.86) 0.35 (0.56) 17.75 (7.38) 5.83 (0.02) 5.26 (-0.08) 7 15.57 

ML 9.07 (6.82) 0.77 (0.8) -0.8 (-0.37) 15.06 (5.42) 6.99 (0.02) 7.89 (0.16) 7 14.92 

 

  



Table 3: The performance of species-pruned transfer functions by leave-one-out (RMSEPLOO), leave-one-site-out (RMSEPLOSO) and segment-wise (RMSEPsw) 

cross validation methods, which were developed based on leave-one-out (RMSEPLOO) cross validation. Figures in parentheses for RMSEPLOO, R2
(LOO), 

Avg.Bias(LOO) and Max.Bias(LOO) are the statistical performance after data-screening. Figures in parentheses for RMSEPSW and RMSEP LOSO are the relative 

decrease or increase compared to corresponding RMSEPLOO data-screening. SD is the standard deviation of all WTD included in each model after data-

screening. 

 

 

Transfer function RMSEPLOO R
2

(LOO) Avg.Bias(LOO) Max.Bias(LOO) RMSEPSW RMSEPLOSO 
No. samples 

removed 
SD 

No. taxa  
remaining 

WA.inv 8.77 (6.1) 0.75 (0.84) 0.13 (0.16) 26.38 (10.17) 6.02 (-0.01) 5.94 (-0.03) 7 15.54 15 

WA.cla 9.88 (6.22) 0.74 (0.85) 0.44 (0.36) 17.99 (8.72) 6.17 (-0.01) 6.99 (0.12) 14 15.79 50 

WA.Tol.inv 8.2 (6.6) 0.78 (0.82) 0.49 (0.48) 23.77 (10.08) 6.92 (0.05) 6.68 (0.01) 4 15.69 24 

WA.Tol.cla 8.91 (6.43) 0.78 (0.85) 0.67 (0.69) 19.05 (5.99) 6.81 (0.06) 6.79 (0.06) 8 15.94 21 

MAT(k=4) 7.51 (5.97) 0.82 (0.87) 0.85 (0.35) 15.13 (18.5) 8.13 (0.36) 5.48 (-0.08) 7 16.64 17 

ML 9.08 (6.83) 0.77 (0.8) -0.77 (-0.34) 15.06 (5.41) 7.01 (0.03) 7.89 (0.16) 7 14.92 40 

 

 

 



Supplementary Figure 1: Images of an undescribed testate amoeba found in this research, herein 

assigned the name Nebela sp1. The test is approximately 70 x 40 m in size, oblong in shape and has 

mosaic plates.  The aperture is not perpendiclar to the lateral axis. 

 

 

 

  



Supplementary Figure 2: Taxa importance index for six different transfer functions. The names of 

the testate amoebae taxa are shortened versions, with the full names provided in Supplementary 

Table 2. The y-axis is the maximum abundance of the taxa among all samples. The importance index 

indicates the relative importance of the taxa (with larger numbers indicating greater importance). 

 

 

 

 

 

  



Supplementary Figure 3: Biplots of predicted vs. observed water-table depth (WTD) (A-C and G-I) 

and residual vs. observed WTD (D-F and J-L) for transfer functions using leave one out (LOO) cross 

validation before (A-F; e.g. weighted average using classical deshrinking WA.cla_pre) and after (G-L; 

e.g. WA.cla) data screening for removal of outlier samples. Horizontal dashed lines show the cut-off 

level (i.e. 20% of WTD range = 14cm). Green dots represent those samples that were removed as 

outliers. 

 

 

 

 

 

  



Supplementary Figure 4: Segment-wise root mean squared error of prediction (RMSEPSW) plots for 

three model types (WA.inv, MAT and ML) based on leave-one-out (LOO) cross validation. Each 

dataset was divided into 9 equal water table depth segments (see text for details). Grey histograms 

show the sampling frequency of each segment (left-hand y-axis). Green lines are the individual 

RMSEP values for each segment (right-hand y-axis). Red dashed lines show the RMSEPSW (i.e. mean 

of all individual segments), compared to RMSEPLOO (black dashed line). The green line in WA.cla is 

missing as all samples in this segment were removed during removal of samples with high residual 

values (see text for details). 

 

 

 

 

  



Supplementary Figure 5: Spatial autocorrelation analysis for three model types (WA.cla, MAT, ML) 

based on leave-one-out (LOO) cross validation. Plots show the effect on model performance (as 

measured by R2) of removing samples by three different methods: 1) by random (open circles, black 

solid line); 2) by geographical proximity (filled circles, dashed black line); and 3) by environmental 

proximity (red crosses, red dashed line). 

 

 

 

 

 

  



Supplementary Table 1: Laboratory methods used for the preparation of the modern testate 

amoeba samples. 

 

 

Step 1 Mix 3-5 g of sediment sample with 1 drop of household detergent 
in a beaker with 200 ml reverse osmosis water, stir well and leave 
overnight 

Step 2 Sieve through three-nested sieves (250 m, 215 m and 

20 m), retaining the fraction between 215 m and 20 m 

Step 3 Add 5 ml 10% NaOH, 25ml acetone and 20 ml reverse osmosis 
water to the samples  

Step 4 Warm on a hotplate (preheated to 80°C) for 5 minutes 

Step 5 Sieve through the three-nested sieves, retaining the fraction 

between 215 m and 20 m 

Step 6 Centrifuge for 5 mins at 3,000 rpm 

Step 7 Mount on microscope slides with reverse osmosis water (sealing 
a 22 x 55 mm coverslip with nail polish) 

 

 

  



Supplementary Table 2: A list of all testate amoebae identified across all sites. Site name abbreviations can be found in Figure 1 and Table 1. 

 

Taxa Abbreviated name 
Occurrence (number of 

samples out of 68) 
Max abundance (%) Sites where the taxa occurred 

Apodera vas Apo vas 30 23.14 BF, SF, TGB, GF, DC, PB, RG 

Arcella discoides type Arc dis 23 5.69 BF, SF, TGB, GF, DC, RG 

Arcella hemispherica Arc hem 8 1.75 BF, GF, PB, RG 

Argynnia dentistoma type Arg den 1 0.83 SF 

Assulina muscorum Ass mus 62 86.96 BF, SF, TGB, CC, GF, DC, PB, RG 

Bullinularia indica Bul ind 3 1.3 SF 

Centropyxis aculeata type Cen acu 22 30.39 BF, SF, TGB, GF, DC, PB, RG 

Centropyxis cassis type Cen cas 32 14.29 BF, SF, TGB, GF, DC, PB, RG 

Centropyxis ecornis type Cen eco 7 5.88 BF 

Centropyxis platystoma  type Cen pla 51 46.2 BF, SF, TGB, CC, GF, DC, PB, RG 

Certesella martiali Cer mar 31 29.93 SF, TGB, GF, DC, PB, RG 

Cryptodifflugia sacculus Cry sac 1 1.94 TGB 

Cyclopxis arcelloides type Cyc arc 65 81.62 BF, SF, TGB, CC, GF, DC, PB, RG 

Difflugia acuminata Dif acu 1 0.81 RG 

Difflugia globulosa type Dif glo 3 29 DC, PB, RG 

Difflugia lanceolata Dif lan 3 0.98 BF, TGB 

Difflugia lucida type Dif luc 34 21.14 BF, SF, TGB, GF, DC, PB, RG 

Difflugia oblonga type Dif obl 18 13.38 BF, SF, TGB, GF, DC, RG 

Difflugia pritist type Dif pri 39 22.06 BF, SF, TGB, GF, DC, PB, RG 

Difflugia pulex Dif pul 24 57.54 BF, SF, TGB, GF, DC, PB, RG 

Euglypha compressa type Eug com 30 22.12 BF, SF, TGB, GF, DC, PB, RG 

Euglypha cristata Eug cri 6 1.71 BF, SF, DC, RG 

Euglypha rotunda type Eug rot 11 3.85 SF, TGB, GF, DC, PB, RG 

Euglypha strigosa type Eug str 24 16.83 SF, TGB, GF, DC, PB, RG 

Euglypha tuberculata type Eug tub 65 40.38 BF, SF, TGB, CC, GF, DC, PB, RG 

Heleopera petricola Hel pet 13 4.1 TGB, GF, DC, PB, RG 

Heleopera sphagni Hel sph 1 0.98 GF 



Heleopera sylvatica Hel syl 48 36.88 SF, TGB, GF, DC, PB, RG 

Hyalosphenia minuta type Hya min 2 0.93 SF, RG 

Hyalosphenia subflava Hya sub 12 40.74 SF, GF, DC, RG 

Lesquerensia modesta type Les mod 1 11 PB 

Nebela barbata Neb bar 9 7.86 SF, TGB, GF, DC, PB, RG 

Nebela bohemica type Neb boh 16 6.48 SF, GF, DC, PB, RG 

Nebela collaris type Neb col 1 0.94 TGB 

Nebela lageniformis Neb lag 2 1.98 GF, DC 

Nebela militaris type Neb mil 18 43.2 SF, DC, RG 

Nebela minor type Neb min 13 2.75 BF, SF, TGB, DC, RG 

Nebela sp1 Neb sp1 16 12.82 BF, SF, TGB, DC, PB, RG 

Nebela retorta Neb ret 9 18.35 BF, TGB, DC, RG 

Nebela wailesi type Neb wai 13 7.88 SF, DC, RG 

Physochila griseola type Phy gri 42 39.71 SF, TGB, GF, DC, PB, RG 

Pseudodifflugia fasciularis Pse fas 4 0.95 DC, RG 

Pseudodifflugia fulva type Pse ful 46 59.49 BF, SF, TGB, GF, DC, PB, RG 

Quadrulella symmetrica Qua sym 33 19.28 BF, SF, TGB, GF, DC, PB, RG 

Sphenoderia lenta Sph len 13 1.82 BF, SF, TGB, GF, DC, PB, RG 

Tracheleuglypha dentata Tra den 14 5.17 BF, TGB, GF, RG 

Trigonopyxis arcula type Tri arc 6 11.11 SF, TGB, DC 

Trinema/Corythion type Tri cor 60 57.04 BF, SF, TGB, CC, GF, DC, PB, RG 

Trinema lineare type Tri lin 22 4 BF, SF, TGB, GF, DC, RG 

Trigonopyxis minuta type Tri min 4 10.45 BF 

 

  



Supplementary Table 3: a) Results from CCA on constrained proportion. b) Results from CCA for separate constrained axis (*** = p < 0.001). 

Table 3a.  

  Inertia Proportion 

Total 3.75 1.00 

Constrained 0.68 0.18 

Unconstrained 3.06 0.82 

 

Table 3b. 

  CCA axis 1*** CCA axis 2*** 

Eigenvalue 0.40 0.20 

Proportion Explained 0.59 0.29 

Cumulative Proportion 0.59 0.87 
 

  



 

Supplementary Table 4: The performance of all-species transfer functions performance by cluster-bootstrap RMSEPCB, leave-one-site-out (RMSEPLOSO) and 

segment-wise (RMSEPsw) cross validation methods, which were developed based on RMSEPCB. Figures in parentheses for RMSEPCB, R2
(CB), Avg.Bias(CB) and 

Max.Bias(CB) are the statistical performance after data-screening. Figures in parentheses for RMSEPSW and RMSEP LOSO are the relative decrease or increase 

compared to corresponding RMSEPLOO or RMSEPCB after data-screening. SD is the standard deviation of all WTD included in each model after data-screening. 

 

 

Transfer 
 function 

RMSEPCB R
2

(CB) Avg.Bias(CB) Max.Bias(CB) RMSEPSW RMSEPLOSO 
No. samples 

removed 
SD 

WA.inv 9.72 (7.19) 0.7 (0.81) -1.66 (-0.94) 14.71 (15.89) 7.53 (0.05) 6.51 (-0.09) 7 15.54 

WA.cla 10.57 (6.76) 0.71 (0.84) -2.07 (-1) 22.56 (21.83) 6.67 (-0.01) 6.29 (-0.07) 12 15.87 

WA.Tol.inv 9.62 (7.61) 0.73 (0.8) -2.42 (-1.85) 12.74 (12.79) 7.87 (0.03) 6.65 (-0.13) 5 15.45 

WA.Tol.cla 10.2 (7.56) 0.73 (0.8) -3.14 (-1.97) 15.45 (12.97) 7.7 (0.02) 6.46 (-0.15) 9 15.59 

MAT(k=4) 8.24 (5.75) 0.8 (0.86) -0.49 (-0.27) 32.75 (23.75) 5.86 (0.02) 5.3 (-0.08) 6 15.45 

ML 10.36 (6.97) 0.74 (0.81) -1.08 (-0.76) 44.04 (17.83) 6.3 (-0.1) 7.02 (0.01) 8 14.78 

 


