1,845 research outputs found
Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films
Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in
contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane and
out-of-plane Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films
using energy dependent soft x-ray momentum-resolved photoemission spectroscopy.
We show that the SS originates in nested regions confined to out-of-plane FSs,
which are drastically modified compared to in-plane FSs. From precise
reciprocal space maps in successive zones, we obtain the associated real space
compressive strain of 1.5+-0.5% along c-axis. An autocorrelation analysis
quantifies the incommensurate ordering vector q=(2pi/a)(0,0,~0.86), favoring a
SS and consistent with magneto-optic Kerr effect experiments. The results
reveal the importance of in-plane and out-of-plane FS mapping for ultrathin
films.Comment: 4 pages, 3 figure
Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting
In layered polar semiconductor BiTeI, giant Rashba-type spin-split band
dispersions show up due to the crystal structure asymmetry and the strong
spin-orbit interaction. Here we investigate the 3-dimensional (3D) bulk band
structures of BiTeI using the bulk-sensitive -dependent soft x-ray angle
resolved photoemission spectroscopy (SX-ARPES). The obtained band structure is
shown to be well reproducible by the first-principles calculations, with huge
spin splittings of meV at the conduction-band-minimum and
valence-band-maximum located in the plane. It provides the first
direct experimental evidence of the 3D Rashba-type spin splitting in a bulk
compound.Comment: 9 pages, 4 figure
Raman and fluorescence contributions to resonant inelastic soft x-ray scattering on LaAlO/SrTiO heterostructures
We present a detailed study of the Ti 3 carriers at the interface of
LaAlO/SrTiO heterostructures by high-resolution resonant inelastic soft
x-ray scattering (RIXS), with special focus on the roles of overlayer thickness
and oxygen vacancies. Our measurements show the existence of interfacial Ti
3 electrons already below the critical thickness for conductivity and an
increase of the total interface charge up to a LaAlO overlayer thickness of
6 unit cells before it levels out. By comparing stoichiometric and oxygen
deficient samples we observe strong Ti 3 charge carrier doping by oxygen
vacancies. The RIXS data combined with photoelectron spectroscopy and transport
measurements indicate the simultaneous presence of localized and itinerant
charge carriers. However, it is demonstrated that the relative amount of
localized and itinerant Ti electrons in the ground state cannot be deduced
from the relative intensities of the Raman and fluorescence peaks in excitation
energy dependent RIXS measurements, in contrast to previous interpretations.
Rather, we attribute the observation of either the Raman or the fluorescence
signal to the spatial extension of the intermediate state reached in the RIXS
excitation process.Comment: 9 pages, 6 figure
Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: A density functional theory study
Physical properties of materials are known to be different from the bulk at the nanometer scale. In this context, the dependence of optical properties of nanometric gold thin films with respect to film thickness is studied using density functional theory (DFT). We find that the in-plane plasma frequency of the gold thin film decreases with decreasing thickness and that the optical permittivity tensor is highly anisotropic as well as thickness dependent. Quantitative knowledge of planar metal film permittivity's thickness dependence can improve the accuracy and reliability of the designs of plasmonic devices and electromagnetic metamaterials. The strong anisotropy observed may become an alternative method of realizing indefinite media. © 2013 Optical Society of America
Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer
A microfluidic mixer is applied to study the kinetics of calmodulin conformational changes upon Ca2+ binding. The device facilitates rapid, uniform mixing by decoupling hydrodynamic focusing from diffusive mixing and accesses time scales of tens of microseconds. The mixer is used in conjunction with multiphoton microscopy to examine the fast Ca2+-induced transitions of acrylodan-labeled calmodulin. We find that the kinetic rates of the conformational changes in two homologous globular domains differ by more than an order of magnitude. The characteristic time constants are ≈490 μs for the transitions in the C-terminal domain and ≈20 ms for those in the N-terminal domain of the protein. We discuss possible mechanisms for the two distinct events and the biological role of the stable intermediate, half-saturated calmodulin
- …