1,460 research outputs found

    Immobilization of phenol degrader pseudomonas sp in repeated batch culture using bioceramic and sponge as support materials

    Get PDF
    The performance of two types of inert support, namely bioceramic and sponge to immobilize a locally isolated phenol degrader Pseudomonas sp. in a packed column was investigated in repeated batch culture. Prior to this, our study indicated that immobilization had doubled the tolerance limit of the cells towards phenol from 1000 ppm (in the suspended culture), to 2000 ppm. For the same volume, the bioceramic managed to trap bacterial cells 1.8 times greater than the sponge did. As a result, it was able to remove 100% of 1000 ppm 600–ml phenol fed at a rate of 2.5 ml/min within 24 hours, and the phenol removal capacity was sustained in the next six consecutive batches. Cells entrapped in sponge however, managed to remove around 90% phenol in five batches. Despite lower performance, at large scales, the use of sponge for cell entrapment offers some merits such as lightness, and easily available at cheaper cost

    Time Segmentation Approach Allowing QoS and Energy Saving for Wireless Sensor Networks

    Full text link
    Wireless sensor networks are conceived to monitor a certain application or physical phenomena and are supposed to function for several years without any human intervention for maintenance. Thus, the main issue in sensor networks is often to extend the lifetime of the network by reducing energy consumption. On the other hand, some applications have high priority traffic that needs to be transferred within a bounded end-to-end delay while maintaining an energy efficient behavior. We propose MaCARI, a time segmentation protocol that saves energy, improves the overall performance of the network and enables quality of service in terms of guaranteed access to the medium and end-to-end delays. This time segmentation is achieved by synchronizing the activity of nodes using a tree-based beacon propagation and allocating activity periods for each cluster of nodes. The tree-based topology is inspired from the cluster-tree proposed by the ZigBee standard. The efficiency of our protocol is proven analytically, by simulation and through real testbed measurements

    Cyclic automorphic graph decompositions

    Get PDF
    Chapter 1 introduces the tools and mechanics necessary for this report. Basic definitions and topics of graph theory which pertain to the report and discussion of automorphic decompositions will be covered in brief detail. An automorphic decomposition D of a graph H by a graph G is a G-decomposition of H such that the intersection of graph (D) @H. H is called the automorhpic host, and G is the automorphic divisor. We seek to find classes of graphs that are automorphic divisors, specifically ones generated cyclically. Chapter 2 discusses the previous work done mainly by Beeler. It also discusses and gives in more detail examples of automorphic decompositions of graphs. Chapter 2 also discusses labelings and their direct relation to cyclic automorphic decompositions. We show basic classes of graphs, such as cycles, that are known to have certain labelings, and show that they also are automorphic divisors. In Chapter 3, we are concerned with 2-regular graphs, in particular rCm, r copies of the m-cycle. We seek to show that rCm has a ρ-labeling, and thus is an automorphic divisor for all r and m. we discuss methods including Skolem type difference sets to create cycle systems and their correlation to automorphic decompositions. In the Appendix, we give classes of graphs known to be graceful and our java code to generate ρ-labelings on rCm

    Birefringent properties of the human cornea in vivo : towards a new model of corneal structure

    Get PDF
    The fundamental corneal properties of mechanical rigidity, maintenance of curvature and optical transparency result from the specific organisation of collagen fibrils in the corneal stroma. The exact arrangement of stromal collagen is currently unknown but several structural models have been proposed. The purpose of the present study is to investigate inconsistencies between current x‐ray derived structural models of the cornea and optically derived birefringence data. Firstly, the thesis reviews the current understanding of corneal structure, particularly in relation to corneal birefringence. It also reviews and develops the different analytical approaches used to model optical biaxial behaviour, particularly as applied to predict corneal optical phase retardation. The second part develops a novel technique of elliptic polarization biomicroscopy (EPB), enabling study of corneal birefringence in vivo. Using EPB, the pattern of corneal retardation is recorded for a range of human subjects. This dataset is then used to investigate both central and peripheral corneal birefringence as well as the corneal microstructure. A key finding is that the central parts of the cornea exhibit a retardation pattern compatible with a negative biaxial crystal, whereas the peripheral corneal regions do not. Furthermore, within the central regions of the cornea, orthogonal confocal conic fibrillar structures are identified which resemble the analytically derived contours of equal refractive index of an ideal negative biaxial crystal. The third part of this work presents a synthesis of previous published experimental, anatomical and theoretical findings and the experimental results presented in this thesis. Based on these findings, a novel corneal structural model is proposed that comprises overlapping spherical elliptic structural units. Finally, ensuing biomechanical and clinical consequences of the spherical elliptic structural model and of the EPB technique are discussed including their potential diagnostic and surgical applications

    Combining process-based models for future biomass assessment at landscape scale

    Get PDF
    International audienceWe need an integrated assessment of the bioenergy production at landscape scale for at least three main reasons: (1) it is predictable that we will soon have landscapes dedicated to bioenergy productions; (2) a number of “win–win” solutions combining several dedicated energy crops have been suggested for a better use of local climate, soil mosaic and production systems and (3) “well-to-wheels” analyses for the entire bioenergy production chain urge us to optimize the life cycle of bioenergies at large scales. In this context, we argue that the new generation of landscape models allows in silico experiments to estimate bioenergy distributions (in space and time) that are helpful for this integrated assessment of the bioenergy production. The main objective of this paper was to develop a detailed modeling methodology for this purpose. We aimed at illustrating and discussing the use of mechanistic models and their possible association to simulate future distributions of fuel biomass. We applied two separated landscape models dedicated to human-driven agricultural and climate-driven forested neighboring patches. These models were combined in the same theoretical (i.e. virtual) landscape for present as well as future scenarios by associating realistic agricultural production scenarios and B2-IPCC climate scenarios depending on the bioenergy type (crop or forest) concerned in each landscape patch. We then estimated esthetical impacts of our simulations by using 3D visualizations and a quantitative “depth” index to rank them. Results first showed that the transport cost at landscape scale was not correlated to the total biomass production, mainly due to landscape configuration constraints. Secondly, averaged index values of the four simulations were conditioned by agricultural practices, while temporal trends were conditioned by gradual climate changes. Thirdly, the most realistic simulated landscape combining intensive agricultural practices and climate change with atmospheric CO2 concentration increase corresponded to the lowest and unwanted bioenergy conversion inefficiency (the biomass production ratio over 100 years divided by the averaged transport cost) and to the most open landscape. Managing land use and land cover changes at landscape scale is probably one of the most powerful ways to mitigate negative (or magnify positive) effects of climate and human decisions on overall biomass productions

    Interfacial biocatalytic performance of nanofiber-supported β-galactosidase for production of galacto-oligosaccharides

    Get PDF
    Molecular distribution, structural conformation and catalytic activity at the interface between enzyme and its immobilising support are vital in the enzymatic reactions for producing bioproducts. In this study, a nanobiocatalyst assembly, β-galactosidase immobilized on chemically modified electrospun polystyrene nanofibers (PSNF), was synthesized for converting lactose into galacto-oligosaccharides (GOS). Characterization results using scanning electron microscopy (SEM) and fluorescence analysis of fluorescein isothiocyanat (FITC) labelled β-galactosidase revealed homogenous enzyme immobilization, thin layer structural conformation and biochemical functionalities of the nanobiocatalyst assembly. The β-galactosidase/PSNF assembly displayed enhanced enzyme catalytic performance at a residence time of around 1 min in a disc-stacked column reactor. A GOS yield of 41% and a lactose conversion of 88% was achieved at the initial lactose concentration of 300 g/L at this residence time. This system provided a controllable contact time of products and substrates on the nanofiber surface and could be used for products which are sensitive to the duration of nanobiocatalysis

    Nekatere kompozicijske poteze izbranih slovenskih romantičnih samospevov

    Get PDF
    Slovenski romanticizem - ne pa romanticizem na Slovenskem - se začne po letu 1848 in kot gibanje traja še v 20. stoletju in tudi zdaj. Avtor je v prispevku opisal glavne splošne značilnosti prostora in časa, v katerih so slovenski skladatelji ustvarjali samospeve. Z nekaj primeri je tudi predstavil nekatere bistvene kompozicijske poteze romanticističnega samospeva

    Melt blown polypropylene nanofiber template for homogenous pore channels monoliths

    Get PDF
    Monoliths are an important technology for filtration, liquid chromatography, and protein purification. A template commonly uses to produce porous monolith. However, it is a challenge to produce a monolith with a homogenous porous structure due to the arrangements of pores within the monolith are often uneven and sometimes closed, causing pressure to accumulate and increase within the monolith which reduce the efficiency of the monoliths. Therefore, an appropriate template is needed to produce a monolith with homogenous porous structure. Nanofiber is a potential alternative as a template due to its high porosity and interconnectivity. Therefore, this research aimed to investigate the potential of polypropylene melt blown nanofiber fabricated at various operating condition to fabricate monolith by assessing the monolith morphology. Nanofibers templates were produced using a melt blowing technique at various motor speeds, air pressures, and die-to-collector distance (DCD) between 30 and 50 Hz, 0.30 and 0.50 Mpa, and 20 and 50 cm respectively, design by Response Surface Methodology. The nanofibers were characterized for its morphology and melting point using scanning electron microscope (SEM) and molten point analysis instrument respectively. The findings show that the polypropylene nanofiber diameter was in the range of 3.58 to 11.00 x 103 nm. Meanwhile, melting point obtained were in the range of 121.0 to 128.8 °C. Subsequently macropores monoliths were successfully fabricated at 0.45 Mpa air pressure, 40 Hz motor speed and 60.23 cm die-to-collector distance. It can be concluded that, melt blown polypropylene nanofiber can be potentially applied as a template for monolith fabrication
    corecore