2,529 research outputs found

    Organismic Supercategories: I. Proposals for a General Unified Theory of Systems- Classical, Quantum, and Complex Biological Systems.\ud \ud \ud

    Get PDF
    The representation of physical and complex biological systems in terms of organismic supercategories was introduced in 1968 by Baianu and Marinescu in the attached paper which was published in the Bulletin of Mathematical Biophysics, edited by Nicolas Rashevsky. The different approaches to relational biology, developed by Rashevsky, Rosen and by Baianu et al.(1968,1969,1973,1974,1987,2004)were later discussed. \ud The present paper is an attempt to outline an abstract unitary theory of systems. In the introduction some of the previous abstract representations of systems are discussed. Also a possible connection of abstract representations of systems with a general theory of measure is proposed. Then follow some necessary definitions and authors' proposals for an axiomatic theory of systems. Finally some concrete examples are analyzed in the light of the proposed theory.\ud \ud An abstract representation of biological systems from the standpoint of the theory of supercategories is presented. The relevance of such representations forG-relational biologies is suggested. In section A the basic concepts of our representation, that is class, system, supercategory and measure are introduced. Section B is concerned with the mathematical representation starting with some axioms and principles which are natural extensions of the current abstract representations in biology. Likewise, some extensions of the principle of adequate design are introduced in section C. Two theorems which present the connection between categories and supercategories are proved. Two other theorems concerning the dynamical behavior of biological and biophysical systems are derived on the basis of the previous considerations. Section D is devoted to a general study of oscillatory behavior in enzymic systems, some general quantitative relations being derived from our representation. Finally, the relevance of these results for a quantum theoretic approach to biology is discussed.\ud \ud http://www.springerlink.com/content/141l35843506596h

    A Frobenius variant of Seshadri constants

    Full text link
    We define and study a version of Seshadri constant for ample line bundles in positive characteristic. We prove that lower bounds for this constant imply the global generation or very ampleness of the corresponding adjoint line bundle. As a consequence, we deduce that the criterion for global generation and very ampleness of adjoint line bundles in terms of usual Seshadri constants holds also in positive characteristic.Comment: 16 page

    Separable mechanisms underlying global feature-based attention

    Get PDF
    Feature-based attention is known to operate in a spatially global manner, in that the selection of attended features is not bound to the spatial focus of attention. Here we used electromagnetic recordings in human observers to characterize the spatiotemporal signature of such global selection of an orientation feature. Observers performed a simple orientation-discrimination task while ignoring task-irrelevant orientation probes outside the focus of attention. We observed that global feature-based selection, indexed by the brain response to unattended orientation probes, is composed of separable functional components. One such component reflects global selection based on the similarity of the probe with task-relevant orientation values ("template matching"), which is followed by a component reflecting selection based on the similarity of the probe with the orientation value under discrimination in the focus of attention ("discrimination matching"). Importantly, template matching occurs at similar to 150 ms after stimulus onset, similar to 80 ms before the onset of discrimination matching. Moreover, source activity underlying template matching and discrimination matching was found to originate from ventral extrastriate cortex, with the former being generated in more anterolateral and the latter in more posteromedial parts, suggesting template matching to occur in visual cortex higher up in the visual processing hierarchy than discrimination matching. We take these observations to indicate that the population-level signature of global feature-based selection reflects a sequence of hierarchically ordered operations in extrastriate visual cortex, in which the selection based on task relevance has temporal priority over the selection based on the sensory similarity between input representations

    The role of MicroRNA molecules and MicroRNA-regulating machinery in the pathogenesis and progression of epithelial ovarian cancer

    Get PDF
    MicroRNA molecules are small, single-stranded RNA molecules that function to regulate networks of genes. They play important roles in normal female reproductive tract biology, as well as in the pathogenesis and progression of epithelial ovarian cancer. DROSHA, DICER, and Argonaute proteins are components of the microRNA-regulatory machinery and mediate microRNA production and function. This review discusses aberrant expression of microRNA molecules and microRNA-regulating machinery associated with clinical features of epithelial ovarian cancer. Understanding the regulation of microRNA molecule production and function may facilitate the development of novel diagnostic and therapeutic strategies to improve the prognosis of women with epithelial ovarian cancer. Additionally, understanding microRNA molecules and microRNA-regulatory machinery associations with clinical features may influence prevention and early detection efforts

    Adverse reactions of biological therapies in patients with psoriasis

    Get PDF
    Psoriasis is a chronic, immune-mediated disorder characterized by well demarcated, erythematous plaques covered by thick, silvery-white scales, most often located on the knees, elbows, sacral area and scalp. It has a significant impact on the patient\u27s quality of life. Biological therapies revolutionized the treatment of psoriasis vulgaris but there has been concern regarding the use of those agents due to severe adverse reactions reported in patients receiving TNF-α inhibitors for various inflammatory diseases. The aim of this paper is to review the most important adverse reactions reported in patients receiving biological treatments. The most common and severe side effects associated with biologicals are infections, cardiac adverse reactions, neurologic adverse reactions, lymphomas, non-melanoma skin cancers and hepatobiliary disease

    Task-load-dependent activation of dopaminergic midbrain areas in the absence of reward

    Get PDF
    Dopamine release in cortical and subcortical structures plays a central role in reward-related neural processes. Within this context, dopaminergic inputs are commonly assumed to play an activating role, facilitating behavioral and cognitive operations necessary to obtain a prospective reward. Here, we provide evidence from human fMRI that this activating role can also be mediated by task-demand-related processes and thus extendsbeyondsituationsthatonlyentailextrinsicmotivatingfactors. Using a visual discrimination task in which varying levels of task demands were precued, we found enhanced hemodynamic activity in the substantia nigra (SN) for high task demands in the absence of reward or similar extrinsic motivating factors. This observation thus indicates that the SN can also be activated in an endogenous fashion. In parallel to its role in reward-related processes, reward-independent activation likely serves to recruit the processing resources needed to meet enhanced task demands. Simultaneously, activity in a wide network of cortical and subcortical control regions was enhanced in response to high task demands, whereas areas of the default-mode network were deactivated more strongly. The present observations suggest that the SN represents a core node within a broader neural network that adjusts the amount of available neural and behavioral resources to changing situational opportunities and task requirements, which is often driven by extrinsic factors but can also be controlled endogenously

    Spin electric effects in molecular antiferromagnets

    Full text link
    Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety of effective low-energy spin Hamiltonians suitable for encoding qubits and implementing spin-based quantum information processing. At the nanoscale, the preferred mechanism for control of quantum systems is through application of electric fields, which are strong, can be locally applied, and rapidly switched. In this work, we provide the theoretical tools for the search for single molecule magnets suitable for electric control. By group-theoretical symmetry analysis we find that the spin-electric coupling in triangular molecules is governed by the modification of the exchange interaction, and is possible even in the absence of spin-orbit coupling. In pentagonal molecules the spin-electric coupling can exist only in the presence of spin-orbit interaction. This kind of coupling is allowed for both s=1/2s=1/2 and s=3/2s=3/2 spins at the magnetic centers. Within the Hubbard model, we find a relation between the spin-electric coupling and the properties of the chemical bonds in a molecule, suggesting that the best candidates for strong spin-electric coupling are molecules with nearly degenerate bond orbitals. We also investigate the possible experimental signatures of spin-electric coupling in nuclear magnetic resonance and electron spin resonance spectroscopy, as well as in the thermodynamic measurements of magnetization, electric polarization, and specific heat of the molecules.Comment: 31 pages, 24 figure

    Asymptotic Stability for a Class of Metriplectic Systems

    Full text link
    Using the framework of metriplectic systems on Rn\R^n we will describe a constructive geometric method to add a dissipation term to a Hamilton-Poisson system such that any solution starting in a neighborhood of a nonlinear stable equilibrium converges towards a certain invariant set. The dissipation term depends only on the Hamiltonian function and the Casimir functions

    Irreducible Killing Tensors from Third Rank Killing-Yano Tensors

    Full text link
    We investigate higher rank Killing-Yano tensors showing that third rank Killing-Yano tensors are not always trivial objects being possible to construct irreducible Killing tensors from them. We give as an example the Kimura IIC metric were from two rank Killing-Yano tensors we obtain a reducible Killing tensor and from third rank Killing-Yano tensors we obtain three Killing tensors, one reducible and two irreducible.Comment: 10 page
    corecore