19,316 research outputs found

    Sub-arcsecond Morphology of Planetary Nebulae

    Full text link
    Planetary nebulae (PNe) can be roughly categorized into several broad morphological classes. The high quality images of PNe acquired in recent years, however, have revealed a wealth of fine structures that preclude simplistic models for their formation. Here we present narrow-band, sub-arcsecond images of a sample of relatively large PNe that illustrate the complexity and variety of small-scale structures. This is especially true for bipolar PNe, for which the images reveal multi-polar ejections and, in some cases, suggest turbulent gas motions. Our images also reveal the presence or signs of jet-like outflows in several objects in which this kind of component has not been previously reported.Comment: 7 pages, 7 figures, Accepted for publication in PAS

    Global constraints on muon-neutrino non-standard interactions

    Get PDF
    The search for new interactions of neutrinos beyond those of the Standard Model may help to elucidate the mechanism responsible for neutrino masses. Here we combine existing accelerator neutrino data with restrictions coming from a recent atmospheric neutrino data analysis in order to lift parameter degeneracies and improve limits on new interactions of muon neutrinos with quarks. In particular we re-consider the results of the NuTeV experiment in view of a new evaluation of its systematic uncertainties. We find that, although constraints for muon neutrinos are better than those applicable to tau or electron neutrinos, they lie at the few ×10−2\times 10^{-2} level, not as strong as previously believed. We briefly discuss prospects for further improvement.Comment: 10 pages, 5 figures, 2 table

    Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering

    Full text link
    We explore the potential of current and next generation of coherent elastic neutrino-nucleus scattering (CEν\nuNS) experiments in probing neutrino electromagnetic interactions. On the basis of a thorough statistical analysis, we determine the sensitivities on each component of the Majorana neutrino transition magnetic moment (TMM), ∣Λi∣\left \vert \Lambda_i \right \vert, that follow from low-energy neutrino-nucleus experiments. We derive the sensitivity to neutrino TMM from the first CEν\nuNS measurement by the COHERENT experiment, at the Spallation Neutron Source. We also present results for the next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role of the CP violating phases in each case is also briefly discussed. We conclude that future CEν\nuNS experiments with low-threshold capabilities can improve current TMM limits obtained from Borexino data.Comment: 25 pages, 8 figures, 2 tables, analysis updated; conclusions unchanged; references added; matches published versio

    Chiral spin-orbital liquids with nodal lines

    Get PDF
    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia

    Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon

    Full text link
    The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3σ3 \sigma significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.Comment: discussion expanded including light mediators and nuclear uncertainties, figures added, references added. V3: Fig. 7 corrected, conclusions unchange
    • …
    corecore