7 research outputs found

    Dynamics of serological responses to defined recombinant proteins during Schistosoma mansoni infection in mice before and after the treatment with praziquantel.

    No full text
    To eliminate schistosomiasis, appropriate diagnostic tests are required to monitor its prevalence and transmission, especially in the settings with low endemicity resulting from the consecutive mass drug administration. Antibodies that react with either crude soluble schistosome egg antigens or soluble worm antigen preparations have been used to monitor infection in low-prevalence regions. However, these detection methods cannot discriminate current and past infections and are cross-reactive with other parasites because both antigens contain numerous proteins and glycans from schistosomes, and standard preparations need maintenance of the life cycle of the schistosome. To evaluate the potential utility of nine recombinant Schistosoma mansoni proteins as single defined antigens for serological diagnosis, we monitored the kinetics of antibodies to each antigen during S. mansoni infection in mice before and after the treatment with praziquantel. C57BL/6 mice were infected with 50 cercariae. The levels of immunoglobulin G (IgG) raised against five recombinant antigens (RP26, sm31, sm32, GST, and LAP1) significantly increased as early as 2-4 weeks after infection and rapidly declined by 2 weeks after the treatment, whereas those raised against crude S. mansoni egg antigens or other antigens remained elevated long after the treatment. The IgG1 raised against RP26, sm31, and serpin decreased after the treatment with praziquantel, whereas the IgE raised against serpin declined strikingly after the treatment. This study clarifies the dynamics of the serological responses to recombinant S. mansoni proteins during infection and after the treatment with praziquantel and identifies several candidate antigens with potential utility in the monitoring and surveillance of schistosomiasis toward the elimination of schistosomiasis

    Adipose Stem Cell-Seeded Decellularized Porcine Pericardium: A Promising Functional Biomaterial to Synergistically Restore the Cardiac Functions Post-Myocardial Infarction

    No full text
    Myocardial infarction (MI) is a serious cardiovascular disease as the leading cause of death globally. Hence, reconstruction of the cardiac tissue comes at the forefront of strategies adopted to restore heart functions following MI. In this investigation, we studied the capacity of rat adipose-derived mesenchymal stem cells (r-AdMSCs) and decellularized porcine pericardium (DPP) to restore heart functions in MI animals. MI was induced in four different groups, three of which were treated either using DPP (MI-DPP group), stem cells (MI-SC group), or both (MI-SC/DPP group). Cardiac functions of these groups and the Sham group were evaluated using echocardiography, the intraventricular pressure gradient (IVPG) on weeks 2 and 4, and intraventricular hemodynamics on week 4. On day 31, the animals were euthanized for histological analysis. Echocardiographic, IVPG and hemodynamic findings indicated that the three treatment strategies shared effectively in the regeneration process. However, the MI-SC/DPP group had a unique synergistic ability to restore heart functions superior to the other treatment protocols. Histology showed that the MI-SC/DPP group presented the lowest (p < 0.05) degeneration score and fibrosis % compared to the other groups. Conclusively, stem cell-seeded DPP is a promising platform for the delivery of stem cells and restoration of heart functions post-MI

    Templated dewetting of single-crystal sub-millimeter-long nanowires and on-chip silicon circuits

    No full text
    International audienceLarge-scale, defect-free, micro-and nano-circuits with controlled inter-connections represent the nexus between electronic and photonic components. However, their fabrication over large scales often requires demanding procedures that are hardly scalable. Here we synthesize arrays of parallel ultra-long (up to 0.75 mm), monocrystalline, silicon-based nano-wires and complex, connected circuits exploiting low-resolution etching and annealing of thin silicon films on insulator. Phase field simulations reveal that crystal faceting and stabilization of the wires against breaking is due to surface energy anisotropy. Wires splitting, inter-connections and direction are independently managed by engineering the dewetting fronts and exploiting the spontaneous formation of kinks. Finally, we fabricate field-effect transistors with state-of-the-art trans-conductance and electron mobility. Beyond the first experimental evidence of controlled dewetting of patches featuring a record aspect ratio of 1/60000andselfassembled1/60000 and self-assembled mm long nano-wires, our method constitutes a distinct and promising approach for the deterministic implementation of atomically-smooth, mono-crystalline electronic and photonic circuits
    corecore