98 research outputs found
The Dynamics of a Rigid Body in Potential Flow with Circulation
We consider the motion of a two-dimensional body of arbitrary shape in a
planar irrotational, incompressible fluid with a given amount of circulation
around the body. We derive the equations of motion for this system by
performing symplectic reduction with respect to the group of volume-preserving
diffeomorphisms and obtain the relevant Poisson structures after a further
Poisson reduction with respect to the group of translations and rotations. In
this way, we recover the equations of motion given for this system by Chaplygin
and Lamb, and we give a geometric interpretation for the Kutta-Zhukowski force
as a curvature-related effect. In addition, we show that the motion of a rigid
body with circulation can be understood as a geodesic flow on a central
extension of the special Euclidian group SE(2), and we relate the cocycle in
the description of this central extension to a certain curvature tensor.Comment: 28 pages, 2 figures; v2: typos correcte
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Since the mid-1920s, different strands of research used stars as "physics
laboratories" for investigating the nature of matter under extreme densities
and pressures, impossible to realize on Earth. To trace this process this paper
is following the evolution of the concept of a dense core in stars, which was
important both for an understanding of stellar evolution and as a testing
ground for the fast-evolving field of nuclear physics. In spite of the divide
between physicists and astrophysicists, some key actors working in the
cross-fertilized soil of overlapping but different scientific cultures
formulated models and tentative theories that gradually evolved into more
realistic and structured astrophysical objects. These investigations culminated
in the first contact with general relativity in 1939, when J. Robert
Oppenheimer and his students George Volkoff and Hartland Snyder systematically
applied the theory to the dense core of a collapsing neutron star. This
pioneering application of Einstein's theory to an astrophysical compact object
can be regarded as a milestone in the path eventually leading to the emergence
of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal
Preliminary assessment of the environmental baseline in the Fylde, Lancashire
This report presents the collated preliminary results from the British Geological Survey (BGS) led project Science-based environmental baseline monitoring associated with shale gas development in the Fylde, Lancashire. The project has been funded by a combination of BGS National Capability funding, in-kind contributions from project partners and a grant awarded by the Department of Business Energy and Investment Strategy (BEIS). It complements an on-going project, in which similar activities are being carried out, in the Vale of Pickering, North Yorkshire. Further information on the projects can be found on the BGS website: www.bgs.ac.uk.
The project has initiated a wide-ranging environmental baseline monitoring programme that includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). The motivation behind the project(s) was to establish independent monitoring in the area around the proposed shale gas hydraulic fracturing sites in the Fylde, Lancashire (Cuadrilla Resources Ltd) before any shale gas operations take place.
As part of the project, instrumentation has been deployed to measure, in real-time or near real-time, a range of environmental variables (water quality, seismicity, atmospheric composition). These data are being displayed on the project’s web site (www.bgs.ac.uk/lancashire). Additional survey, sampling and monitoring has also been carried out through a co-ordinated programme of fieldwork and laboratory analysis, which has included installation of new monitoring infrastructure, to allow compilation of one of the most comprehensive environmental datasets in the UK.
The monitoring programme is continuing. However, there are already some very important findings emerging from the limited datasets which should be taken into account when developing future monitoring strategy, policy and regulation. The information is not only relevant to Lancashire but will be applicable more widely in the UK and internationally. Although shale gas operations in other parts of the world are well-established, there is a paucity of good baseline data and effective guidance on monitoring. The project will also allow the experience gained, and the scientifically-robust findings to be used, to develop and establish effective environmental monitoring strategies for shale gas and similar industrial activities
Spectroscopy of proton-rich 79Zr : Mirror energy differences in the highly-deformed fpg shell
Energy differences between isobaric analogue states have been extracted for the A=79, 79Zr/79Y mirror pair following their population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. These are the heaviest nuclei where such measurements have been made to date. The deduced mirror energy differences (MED) are compared with predictions from a new density-functional based approach, incorporating isospin-breaking effects of both Coulomb and nuclear charge-symmetry breaking and configuration mixing
Magnetic fields in cosmic particle acceleration sources
We review here some magnetic phenomena in astrophysical particle accelerators
associated with collisionless shocks in supernova remnants, radio galaxies and
clusters of galaxies. A specific feature is that the accelerated particles can
play an important role in magnetic field evolution in the objects. We discuss a
number of CR-driven, magnetic field amplification processes that are likely to
operate when diffusive shock acceleration (DSA) becomes efficient and
nonlinear. The turbulent magnetic fields produced by these processes determine
the maximum energies of accelerated particles and result in specific features
in the observed photon radiation of the sources. Equally important, magnetic
field amplification by the CR currents and pressure anisotropies may affect the
shocked gas temperatures and compression, both in the shock precursor and in
the downstream flow, if the shock is an efficient CR accelerator. Strong
fluctuations of the magnetic field on scales above the radiation formation
length in the shock vicinity result in intermittent structures observable in
synchrotron emission images. Resonant and non-resonant CR streaming
instabilities in the shock precursor can generate mesoscale magnetic fields
with scale-sizes comparable to supernova remnants and even superbubbles. This
opens the possibility that magnetic fields in the earliest galaxies were
produced by the first generation Population III supernova remnants and by
clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
Environmental monitoring : phase 4 final report (April 2018 - March 2019)
This report describes the results of activities carried out as part of the Environmental
Monitoring Project (EMP) led by the British Geological Survey (BGS) in areas around two
shale gas sites in England – Kirby Misperton (Vale of Pickering, North Yorkshire) and Preston
New Road (Fylde, Lancashire). It focuses on the monitoring undertaken during the period April
2018–March 2019 but also considers this in the context of earlier monitoring results that have
been covered in reports for earlier phases of the project (Phases I–IV)
2
.
The EMP project is a multi-partner project involving BGS together with Public Health England
(PHE), University of Birmingham, University of Bristol, University of Manchester, Royal
Holloway University of London (RHUL) and University of York. The work has been enabled
by funding from a combination of the BGS National Capability programme, a grant awarded
by the UK Government’s Department for Business Energy & Industrial Strategy (BEIS) and
additional benefit-in-kind contributions from all partners.
The project comprises the comprehensive monitoring of different environment compartments
and properties at and around the two shale-gas sites. The component parts of the EMP are all
of significance when considering environmental and human health risks associated with shale
gas development. Included are seismicity, ground motion, water (groundwater and surface
water), soil gas, greenhouse gases, air quality, and radon.
The monitoring started before hydraulic fracturing had taken place at the two locations, and so
the results obtained before the initiation of operations at the shale-gas sites represent baseline
conditions. It is important to characterise adequately the baseline conditions so that any future
changes caused by shale gas operations, including hydraulic fracturing, can be identified. This
is also the case for any other new activities that may impact those compartments of the
environment being monitored as part of the project.
In the period October 2018–December 2018, an initial phase of hydraulic fracturing took place
at the Preston New Road (PNR) shale-gas site (shale gas well PNR1-z) in Lancashire. This was
followed by a period of flow testing of the well to assess its performance (to end of January
2019). The project team continued monitoring during these various activities and several
environmental effects were observed. These are summarised below and described in more
detail within the report. The initiation of operations at the shale-gas site signified the end of
baseline monitoring. At the Kirby Misperton site (KMA), approval has not yet been granted
for hydraulic fracturing of the shale gas well (KM8), and so no associated operations have
taken place during the period covered by this report. The effects on air quality arising from the
mobilisation of equipment in anticipation of hydraulic fracturing operations starting was
reported in the Phase III report, and in a recently published paper3
. Following demobilisation of the equipment and its removal from the site, conditions returned to baseline and the on-going
monitoring (reported in this report) is effectively a continuation of baseline monitoring
Genetically Determined Height and Risk of Non-hodgkin Lymphoma
Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00\u20131.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01\u20131.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes
- …