3,367 research outputs found
Feeder Cattle Basis in South Carolina 2000-2004
Livestock Production/Industries,
Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry
Shape differences are manifested in cortical structures due to
neuropsychiatric disorders. Such differences can be measured by labeled
cortical distance mapping (LCDM) which characterizes the morphometry of the
laminar cortical mantle of cortical structures. LCDM data consist of signed
distances of gray matter (GM) voxels with respect to GM/white matter (WM)
surface. Volumes and descriptive measures (such as means and variances) for
each subject and the pooled distances provide the morphometric differences
between diagnostic groups, but they do not reveal all the morphometric
information contained in LCDM distances. To extract more information from LCDM
data, censoring of the distances is introduced. For censoring of LCDM
distances, the range of LCDM distances is partitioned at a fixed increment
size; and at each censoring step, and distances not exceeding the censoring
distance are kept. Censored LCDM distances inherit the advantages of the pooled
distances. Furthermore, the analysis of censored distances provides information
about the location of morphometric differences which cannot be obtained from
the pooled distances. However, at each step, the censored distances aggregate,
which might confound the results. The influence of data aggregation is
investigated with an extensive Monte Carlo simulation analysis and it is
demonstrated that this influence is negligible. As an illustrative example, GM
of ventral medial prefrontal cortices (VMPFCs) of subjects with major
depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy
control (Ctrl) subjects are used. A significant reduction in laminar thickness
of the VMPFC and perhaps shrinkage in MDD and HR subjects is observed when
compared to Ctrl subjects. The methodology is also applicable to LCDM-based
morphometric measures of other cortical structures affected by disease.Comment: 25 pages, 10 figure
Recommended from our members
Gene expression differs in susceptible and resistant amphibians exposed to Batrachochytrium dendrobatidis.
Chytridiomycosis, the disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has devastated global amphibian biodiversity. Nevertheless, some hosts avoid disease after Bd exposure even as others experience near-complete extirpation. It remains unclear whether the amphibian adaptive immune system plays a role in Bd defence. Here, we describe gene expression in two host species-one susceptible to chytridiomycosis and one resistant-following exposure to two Bd isolates that differ in virulence. Susceptible wood frogs (Rana sylvatica) had high infection loads and mortality when exposed to the more virulent Bd isolate but lower infection loads and no fatal disease when exposed to the less virulent isolate. Resistant American bullfrogs (R. catesbeiana) had high survival across treatments and rapidly cleared Bd infection or avoided infection entirely. We found widespread upregulation of adaptive immune genes and downregulation of important metabolic and cellular maintenance components in wood frogs after Bd exposure, whereas American bullfrogs showed little gene expression change and no evidence of an adaptive immune response. Wood frog responses suggest that adaptive immune defences may be ineffective against virulent Bd isolates that can cause rapid physiological dysfunction. By contrast, American bullfrogs exhibited robust resistance to Bd that is likely attributable, at least in part, to their continued upkeep of metabolic and skin integrity pathways as well as greater antimicrobial peptide expression compared to wood frogs, regardless of exposure. Greater understanding of these defences will ultimately help conservationists manage chytridiomycosis
Database management and analysis of fisheries in Illinois: Final report, 1 March 1999-28 February 2002
Issued May 2002; F-69-RReport issued on: May 200
Canadian and U.S. Antitrust Law--Areas of Overlap between Anitrust and Import Relief Laws
Competition and Dispute Resolution in the North American Context and antitrust and free trade zone
Counterintuitive Roles of Experience and Weather on Migratory Performance
Migration allows animals to live in resource-rich but seasonally variable environments. Because of the costs of migration, there is selective pressure to capitalize on variation in weather to optimize migratory performance. To test the degree to which migratory performance (defined as speed of migration) of Golden Eagles (Aquila chrysaetos) was determined by age- and season-specific responses to variation in weather, we analyzed 1,863 daily tracks (n = 83 migrant eagles) and 8,047 hourly tracks (n = 83) based on 15 min GPS telemetry data from Golden Eagles and 277 hourly tracks based on 30 s data (n = 37). Spring migrant eagles traveled 139.75 ± 82.19 km day-1 (mean 6 SE; n = 57) and 25.59 ± 11.75 km hr-1 (n = 55). Autumn migrant eagles traveled 99.14 ± 59.98 km day-1 (n = 26) and 22.18 ± 9.18 km hr-1 (n = 28). Weather during migration varied by season and by age class. During spring, best-supported daily and hourly models of 15 min data suggested that migratory performance was influenced most strongly by downward solar radiation and that older birds benefited less from flow assistance (tailwinds). During autumn, best-supported daily and hourly models of 15 min data suggested that migratory performance was influenced most strongly by south–north winds and by flow assistance, again less strongly for older birds. In contrast, models for hourly performance based on data collected at 30 s intervals were not well described by a single model, likely reflecting eagles’ rapid responses to the many weather conditions they experienced. Although daily speed of travel was similar for all age classes, younger birds traveled at faster hourly speeds than did adults. Our analyses uncovered strong, sometimes counterintuitive, relationships among weather, experience, and migratory flight, and they illustrate the significance of factors other than age in determining migratory performance
Review of foundational concepts and emerging directions in metamaterial research: Design, phenomena, and applications
In the past two decades, artificial structures known as metamaterials have
been found to exhibit extraordinary material properties that enable the
unprecedented manipulation of electromagnetic waves, elastic waves, molecules,
and particles. Phenomena such as negative refraction, bandgaps, near perfect
wave absorption, wave focusing, negative Poissons ratio, negative thermal
conductivity, etc., all are possible with these materials. Metamaterials were
originally theorized and fabricated in electrodynamics, but research into their
applications has expanded into acoustics, thermodynamics, seismology, classical
mechanics, and mass transport. In this Research Update we summarize the
history, current state of progress, and emerging directions of metamaterials by
field, focusing the unifying principles at the foundation of each discipline.
We discuss the different designs and mechanisms behind metamaterials as well as
the governing equations and effective material parameters for each field. Also,
current and potential applications for metamaterials are discussed. Finally, we
provide an outlook on future progress in the emerging field of metamaterials.Comment: 22 pages, 3 figures, 1 tabl
A conceptual framework for graduate teaching assistant professional development evaluation and research
© 2016 T. D. Reeves et al. Biology graduate teaching assistants (GTAs) are significant contributors to the educational mission of universities, particularly in introductory courses, yet there is a lack of empirical data on how to best prepare them for their teaching roles. This essay proposes a conceptual framework for biology GTA teaching professional development (TPD) program evaluation and research with three overarching variable categories for consideration: outcome variables, contextual variables, and moderating variables. The framework’s outcome variables go beyond GTA satisfaction and instead position GTA cognition, GTA teaching practice, and undergraduate learning outcomes as the foci of GTA TPD evaluation and research. For each GTA TPD outcome variable, key evaluation questions and example assessment instruments are introduced to demonstrate how the framework can be used to guide GTA TPD evaluation and research plans. A common conceptual framework is also essential to coordinating the collection and synthesis of empirical data on GTA TPD nationally. Thus, the proposed conceptual framework serves as both a guide for conducting GTA TPD evaluation at single institutions and as a means to coordinate research across institutions at a national level
PREFERENTIAL FLOW EFFECTS ON SUBSURFACE CONTAMINANT TRANSPORT IN ALLUVIAL FLOODPLAINS
For sorbing contaminants, transport from upland areas to surface water systems is typically considered to be due to surface runoff, with negligible input from subsurface transport assumed. However, certain conditions can lead to an environment where subsurface transport to streams may be significant. The Ozark region, including parts of Oklahoma, Arkansas, and Missouri, is one such environment, characterized by cherty, gravelly soils and gravel bed streams. Previous research identified a preferential flow path (PFP) at an Ozark floodplain along the Barren Fork Creek in northeastern Oklahoma and demonstrated that even a sorbing contaminant, i.e., phosphorus, can be transported in significant quantities through the subsurface. The objective of this research was to investigate the connectivity and floodplain-scale impact of subsurface physical heterogeneity (i.e., PFPs) on contaminant transport in alluvial floodplains in the Ozarks. This research also evaluated a hypothesis that alluvial groundwater acts as a transient storage zone, providing a contaminant sink during high stream flow and a contaminant source during stream baseflow. The floodplain and PFP were mapped with two electrical resistivity imaging techniques. Low-resistivity features (i.e., less than 200 Ω-m) corresponded to topographical depressions on the floodplain surface, which were hypothesized to be relict stream channels with fine sediment (i.e., sand, silt, and clay) and gravel deposits. The mapped PFP, approximately 2 m in depth and 5 to 10 m wide, was a buried gravel bar with electrical resistivity in the range of 1000 to 5000 Ω-m. To investigate the PFP, stream, and groundwater dynamics, a constant-head trench test was installed with a conservative tracer (Rhodamine WT) injected into the PFP at approximately 85 mg/L for 1.5 h. Observation wells were installed along the PFP and throughout the floodplain. Water table elevations were recorded real-time using water level loggers, and water samples were collected throughout the experiment. Results of the experiment demonstrated that stream/aquifer interaction was spatially non-uniform due to floodplain-scale heterogeneity. Transport mechanisms included preferential movement of Rhodamine WT along the PFP, infiltration of Rhodamine WT into the alluvial groundwater system, and then transport in the alluvial system as influenced by the floodplain-scale stream/aquifer dynamics. The electrical resistivity data assisted in predicting the movement of the tracer in the direction of the mapped preferential flow pathway. Spatially variable PFPs, even in the coarse gravel subsoils, affected water level gradients and the distribution of tracer into the shallow groundwater system
- …