15 research outputs found

    Les cyclopropanes monofluorés : nouvelle architecture pour la conception de peptidomimétiques

    Get PDF
    Fluoroorganic compounds are increasingly popular owing to their wide range of applications. For instance, in the field of medicinal chemistry, fluorinated molecules often lead to an improvement of the therapeutic profile compared to non-fluorinated derivatives. Besides, with its unique bonding properties, the cyclopropane ring provides unusual physical and pharmacological properties to structures that incorporate it. Indeed, the structural constraint provided by the cyclopropane ring clearly alters the selectivity and the affinity for a binding site. In this context, we decided to combine the cyclopropane and the fluorine atom to develop two new classes of peptidomimetics. First, we focused on the modification of the side chain of natural aminoacids (methionine, leucine,lysine and arginine) and the synthesis of fluorinated cyclopropyl analogues was achieved. Then, we applied our strategy to the synthesis of the fluorinated analogue of the TMC 435, a NS3/4A serine protease inhibitor involved in the replication cycle of Hepatitis C virus. Finally, in our project aiming at proposing a general method to access pseudopeptides featuring a fluorinated cyclopropane moiety as the peptide bond isostere, we develop a new strategy based on the nucleophilic addition of organometallic reagents to N-(tert-butanesulfinyl)-α-fluoroimines. This methodology allows us to control the asymmetric center on the N-terminal side of the peptide.L’intĂ©rĂȘt des composĂ©s organiques fluorĂ©s est de nos jours de plus en plus important en raison de leur large domaine d’application (agrochimie, nuclĂ©aire, matĂ©riaux, chimie mĂ©dicinale
). Par exemple, en chimie mĂ©dicinale, la prĂ©sence d’un ou plusieurs atomes de fluor au sein de biomolĂ©cules conduit trĂšs souvent Ă  une amĂ©lioration de leur profil thĂ©rapeutique. Par ailleurs, le cyclopropane, le plus petit et le plus tendu des cycloalcanes, permet Ă©galement de modifier les caractĂ©ristiques pharmacologiques de composĂ©s biologiques de par sa gĂ©omĂ©trie inhabituelle. En effet, la rigidification structurale apportĂ©e par ce motif influe sur la biodisponibilitĂ© d’une biomolĂ©cule en amĂ©liorant sa sĂ©lectivitĂ© et son affinitĂ© pour un rĂ©cepteur biologique. Dans ce contexte, nous avons choisi d’associer les propriĂ©tĂ©s remarquables de l’atome de fluor Ă  la contrainte structurale du cyclopropane dans le but d’élaborer deux nouvelles classes de fluoropeptidomimĂ©tiques.Tout d’abord, nous nous sommes intĂ©ressĂ©s Ă  la modification de la chaĂźne latĂ©rale d’acides aminĂ©s naturels en dĂ©veloppant la synthĂšse des analogues cyclopropaniques fluorĂ©s de la mĂ©thionine, de la leucine, de la lysine et de l’arginine. Nous avons ensuite appliquĂ© l’un de nos acides aminĂ©s cyclopropaniques fluorĂ©s Ă  la synthĂšse totale de l’analogue fluorĂ© d’un inhibiteur de la sĂ©rineprotĂ©ase NS3/4A, le TMC 435.Enfin, dans le but de proposer une voie de synthĂšse gĂ©nĂ©rale permettant l’accĂšs aux pseudopeptides fluorĂ©s comportant un monofluorocyclopropane Ă  la place du lien peptidique, nous avons dĂ©veloppĂ© une nouvelle stratĂ©gie basĂ©e sur une Ă©tape d‘addition nuclĂ©ophile de rĂ©actifs organomĂ©talliques sur des N-(tert-butanesulfinyl)-α-fluoroimines chirales

    Les cyclopropanes monofluorés (nouvelle architecture pour la conception de peptidomimétiques)

    Get PDF
    L intĂ©rĂȘt des composĂ©s organiques fluorĂ©s est de nos jours de plus en plus important en raison de leur large domaine d application (agrochimie, nuclĂ©aire, matĂ©riaux, chimie mĂ©dicinale ). Par exemple, en chimie mĂ©dicinale, la prĂ©sence d un ou plusieurs atomes de fluor au sein de biomolĂ©cules conduit trĂšs souvent Ă  une amĂ©lioration de leur profil thĂ©rapeutique. Par ailleurs, le cyclopropane, le plus petit et le plus tendu des cycloalcanes, permet Ă©galement de modifier les caractĂ©ristiques pharmacologiques de composĂ©s biologiques de par sa gĂ©omĂ©trie inhabituelle. En effet, la rigidification structurale apportĂ©e par ce motif influe sur la biodisponibilitĂ© d une biomolĂ©cule en amĂ©liorant sa sĂ©lectivitĂ© et son affinitĂ© pour un rĂ©cepteur biologique. Dans ce contexte, nous avons choisi d associer les propriĂ©tĂ©s remarquables de l atome de fluor Ă  la contrainte structurale du cyclopropane dans le but d Ă©laborer deux nouvelles classes de fluoropeptidomimĂ©tiques.Tout d abord, nous nous sommes intĂ©ressĂ©s Ă  la modification de la chaĂźne latĂ©rale d acides aminĂ©s naturels en dĂ©veloppant la synthĂšse des analogues cyclopropaniques fluorĂ©s de la mĂ©thionine, de la leucine, de la lysine et de l arginine. Nous avons ensuite appliquĂ© l un de nos acides aminĂ©s cyclopropaniques fluorĂ©s Ă  la synthĂšse totale de l analogue fluorĂ© d un inhibiteur de la sĂ©rineprotĂ©ase NS3/4A, le TMC 435.Enfin, dans le but de proposer une voie de synthĂšse gĂ©nĂ©rale permettant l accĂšs aux pseudopeptides fluorĂ©s comportant un monofluorocyclopropane Ă  la place du lien peptidique, nous avons dĂ©veloppĂ© une nouvelle stratĂ©gie basĂ©e sur une Ă©tape d addition nuclĂ©ophile de rĂ©actifs organomĂ©talliques sur des N-(tert-butanesulfinyl)-a-fluoroimines chirales.Fluoroorganic compounds are increasingly popular owing to their wide range of applications. For instance, in the field of medicinal chemistry, fluorinated molecules often lead to an improvement of the therapeutic profile compared to non-fluorinated derivatives. Besides, with its unique bonding properties, the cyclopropane ring provides unusual physical and pharmacological properties to structures that incorporate it. Indeed, the structural constraint provided by the cyclopropane ring clearly alters the selectivity and the affinity for a binding site. In this context, we decided to combine the cyclopropane and the fluorine atom to develop two new classes of peptidomimetics. First, we focused on the modification of the side chain of natural aminoacids (methionine, leucine,lysine and arginine) and the synthesis of fluorinated cyclopropyl analogues was achieved. Then, we applied our strategy to the synthesis of the fluorinated analogue of the TMC 435, a NS3/4A serine protease inhibitor involved in the replication cycle of Hepatitis C virus. Finally, in our project aiming at proposing a general method to access pseudopeptides featuring a fluorinated cyclopropane moiety as the peptide bond isostere, we develop a new strategy based on the nucleophilic addition of organometallic reagents to N-(tert-butanesulfinyl)-a-fluoroimines. This methodology allows us to control the asymmetric center on the N-terminal side of the peptide.ROUEN-INSA Madrillet (765752301) / SudocSudocFranceF

    Fluorinated cyclopropanes : a new scaffold for the conception of peptidomimetics

    No full text
    L’intĂ©rĂȘt des composĂ©s organiques fluorĂ©s est de nos jours de plus en plus important en raison de leur large domaine d’application (agrochimie, nuclĂ©aire, matĂ©riaux, chimie mĂ©dicinale
). Par exemple, en chimie mĂ©dicinale, la prĂ©sence d’un ou plusieurs atomes de fluor au sein de biomolĂ©cules conduit trĂšs souvent Ă  une amĂ©lioration de leur profil thĂ©rapeutique. Par ailleurs, le cyclopropane, le plus petit et le plus tendu des cycloalcanes, permet Ă©galement de modifier les caractĂ©ristiques pharmacologiques de composĂ©s biologiques de par sa gĂ©omĂ©trie inhabituelle. En effet, la rigidification structurale apportĂ©e par ce motif influe sur la biodisponibilitĂ© d’une biomolĂ©cule en amĂ©liorant sa sĂ©lectivitĂ© et son affinitĂ© pour un rĂ©cepteur biologique. Dans ce contexte, nous avons choisi d’associer les propriĂ©tĂ©s remarquables de l’atome de fluor Ă  la contrainte structurale du cyclopropane dans le but d’élaborer deux nouvelles classes de fluoropeptidomimĂ©tiques.Tout d’abord, nous nous sommes intĂ©ressĂ©s Ă  la modification de la chaĂźne latĂ©rale d’acides aminĂ©s naturels en dĂ©veloppant la synthĂšse des analogues cyclopropaniques fluorĂ©s de la mĂ©thionine, de la leucine, de la lysine et de l’arginine. Nous avons ensuite appliquĂ© l’un de nos acides aminĂ©s cyclopropaniques fluorĂ©s Ă  la synthĂšse totale de l’analogue fluorĂ© d’un inhibiteur de la sĂ©rineprotĂ©ase NS3/4A, le TMC 435.Enfin, dans le but de proposer une voie de synthĂšse gĂ©nĂ©rale permettant l’accĂšs aux pseudopeptides fluorĂ©s comportant un monofluorocyclopropane Ă  la place du lien peptidique, nous avons dĂ©veloppĂ© une nouvelle stratĂ©gie basĂ©e sur une Ă©tape d‘addition nuclĂ©ophile de rĂ©actifs organomĂ©talliques sur des N-(tert-butanesulfinyl)-α-fluoroimines chirales.Fluoroorganic compounds are increasingly popular owing to their wide range of applications. For instance, in the field of medicinal chemistry, fluorinated molecules often lead to an improvement of the therapeutic profile compared to non-fluorinated derivatives. Besides, with its unique bonding properties, the cyclopropane ring provides unusual physical and pharmacological properties to structures that incorporate it. Indeed, the structural constraint provided by the cyclopropane ring clearly alters the selectivity and the affinity for a binding site. In this context, we decided to combine the cyclopropane and the fluorine atom to develop two new classes of peptidomimetics. First, we focused on the modification of the side chain of natural aminoacids (methionine, leucine,lysine and arginine) and the synthesis of fluorinated cyclopropyl analogues was achieved. Then, we applied our strategy to the synthesis of the fluorinated analogue of the TMC 435, a NS3/4A serine protease inhibitor involved in the replication cycle of Hepatitis C virus. Finally, in our project aiming at proposing a general method to access pseudopeptides featuring a fluorinated cyclopropane moiety as the peptide bond isostere, we develop a new strategy based on the nucleophilic addition of organometallic reagents to N-(tert-butanesulfinyl)-α-fluoroimines. This methodology allows us to control the asymmetric center on the N-terminal side of the peptide

    Optimization of new extractant molecules for U(VI)/Pu(IV) separation

    No full text
    International audienceThe standard industrial solvent extraction process PUREX involves tri-n-butyl phosphate (TBP) as extractant to separate uranium(VI) and plutonium(IV) from fission products. TBP extractant has been used for decades but has some limitations such as its non-incinerable nature and the formation of some troublesome degradation products by radiolysis. The partition between uranium and plutonium requires the reduction of Pu(IV) to Pu(III) by introduction of reducing and stabilizing agents such as uranium(IV) and hydrazinium nitrate. New monoamide extractants showing higher selectivity are studied in order to separate U(VI) from Pu(IV) in one single cycle without reducing plutonium. This new extraction system would allow the reprocessing of MOX fuels with a higher Pu content. Amongst potential candidates, unsymmetrical N-methyl-N-alkyl monoamides are so far the most promising molecules to achieve U(VI) and Pu(IV) separation without redox chemistry. The effect of structural modifications (alkyl chains length and ramifications) on extraction performances (U and Pu distribution ratios, U/Pu selectivity) and physico-chemical properties (viscosity and loading capacity) was evaluated. In particular, the length of alkyl chains (total number of carbon atoms on the molecule) was adjusted to give enough lipophilicity preventing from third phase formations, but in the same time maintain a reasonable viscosity (compatible with a good hydrodynamic behavior)

    Synthesis of fluorinated cyclopropyl amino acid analogues: toward the synthesis of original fluorinated peptidomimetics.

    No full text
    International audienceA straightforward, easy, and practical access to various amino acid analogues (methionine, leucine, lysine, and arginine) from a unique fluorinated cyclopropane scaffold is described. Moreover, the synthesis, for the first time, of one tripeptide incorporating a fluorinated cyclopropane amino acid (FCAA) analogue is reported

    A Straightforward and Highly Diastereoselective Access to Functionalized Monofluorinated Cyclopropanes via a Michael Initiated Ring Closure Reaction

    No full text
    International audienceThe synthesis of highly functionalized monofluorinated cyclopropanes based on a Michael Initiated Ring Closure (MIRC) reaction has been developed. The addition of quaternary ammonium salts derived from ethyl bromofluoroacetate on a panel of electron deficient alkenes followed by cyclization gave rise to an efficient access to monofluorinated cyclopropanes with good yields and remarkable diastereoselectivity

    Syntheses and applications of monofluorinated cyclopropanes.

    No full text
    International audienceThe combination of a fluorine atom and a cyclopropane ring, which both possess unique structural and chemical features, can generate new relevant building blocks for the discovery of efficient fluorinated biologically active agents. In this review, we report the different strategies to access monofluorocyclopropanes and highlight some of their attractive biological applications

    Bimodal detection of proteins by 129^{129}Xe NMR and fluorescence spectroscopy

    No full text
    International audienceThe full understanding of biological phenomena involves sensitive and non-invasive detection. Here we report the optimization of a probe for intracellular proteins that combines the advantages of fluorescence and hyperpolarized 129^{129}Xe NMR detection. The fluorescence detection part is composed of six residues containing a tetracysteine tag (-CCXXCC-) genetically incorporated into the protein of interest and of a small organic molecule, CrAsH. CrAsH becomes fluorescent when it binds to the tetracysteine tag. The part of the biosensor that enables 129^{129}Xe NMR detection, linked to the CrAsH moiety by a spacer, is based on a cryptophane core fully suited to reversibly host xenon. We benchmark three different peptides containing the tetracysteine tag and four organic biosensors of different stereochemistry to propose the best couple, fully suited for the in vitroin\ vitro detection of proteins
    corecore