928 research outputs found

    The Alliance for Cellular Signaling Plasmid Collection: A Flexible Resource for Protein Localization Studies and Signaling Pathway Analysis

    Get PDF
    Cellular responses to inputs that vary both temporally and spatially are determined by complex relationships between the components of cell signaling networks. Analysis of these relationships requires access to a wide range of experimental reagents and techniques, including the ability to express the protein components of the model cells in a variety of contexts. As part of the Alliance for Cellular Signaling, we developed a robust method for cloning large numbers of signaling ORFs into Gateway® entry vectors, and we created a wide range of compatible expression platforms for proteomics applications. To date, we have generated over 3000 plasmids that are available to the scientific community via the American Type Culture Collection. We have established a website at www.signaling-gateway.org/data/plasmid/ that allows users to browse, search, and blast Alliance for Cellular Signaling plasmids. The collection primarily contains murine signaling ORFs with an emphasis on kinases and G protein signaling genes. Here we describe the cloning, databasing, and application of this proteomics resource for large scale subcellular localization screens in mammalian cell lines

    Monitoring health inequalities: life expectancy and small area deprivation in New Zealand

    Get PDF
    BACKGROUND: Socioeconomic and ethnic inequalities in health are of great concern, and life expectancy provides a readily understood means of monitoring such inequalities. The objectives of this study are to (1) measure life expectancy by socioeconomic deprivation and ethnicity, and (2) describe trends in the deprivation gradient in life expectancy since the mid-1990s. METHODS: Three years of national mortality data have been combined with mid-point population denominators to produce life tables within nationally determined levels of small area deprivation (NZDep96) for three ethnic group: European, Mäori and Pacific peoples. This process has been repeated for the periods 1995–97, 1996–98, 1997–99 and 1998–2000. RESULTS: There was a strong relationship between increasing small area deprivation and decreasing life expectancy. Through the mid- to late 1990s, males living in the most deprived small areas in New Zealand experienced life expectancies at birth approximately nine years less than their counterparts living in the least deprived areas; for females the corresponding difference was under seven years. Mäori and Pacific life expectancies at birth were lower than those of Europeans at each level of deprivation. Over the study period (1995–2000) the gradient in life expectancy across deprivation deciles remained stable. CONCLUSION: Small area deprivation analyses of life expectancy could be repeated routinely at regular intervals, which would provide a useful approach to monitoring trends in socioeconomic, geographic, ethnic and gender inequalities in mortality

    Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    Get PDF
    We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of around 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure

    Safe Brain Tumor Resection Does not Depend on Surgery Alone - Role of Hemodynamics

    Get PDF
    Aim of this study was to determine if perioperative hemodynamics have an impact on perioperative infarct volume and patients' prognosis. 201 cases with surgery for a newly diagnosed or recurrent glioblastoma were retrospectively analyzed. Clinical data and perioperative hemodynamic parameters, blood tests and time of surgery were recorded. Postoperative infarct volume was quantitatively assessed by semiautomatic segmentation. Mean diastolic blood pressure (dBP) during surgery (rho -0.239, 95% CI -0.11 - -0.367, p = 0.017), liquid balance (rho 0.236, 95% CI 0.1-0.373, p = 0.017) and mean arterial pressure (MAP) during surgery (rho -0.206, 95% CI -0.07 - -0.34, p = 0.041) showed significant correlation to infarct volume. A rank regression model including also age and recurrent surgery as possible confounders revealed mean intraoperative dBP, liquid balance and length of surgery as independent factors for infarct volume. Univariate survival analysis showed mean intraoperative dBP and MAP as significant prognostic factors, length of surgery also remained as significant prognostic factor in a multivariate model. Perioperative close anesthesiologic monitoring of blood pressure and liquid balance is of high significance during brain tumor surgery and should be performed to prevent or minimize perioperative infarctions and to prolong survival

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    The Efficacy of the COMFORT Scale in Assessing Optimal Sedation in Critically Ill Children Requiring Mechanical Ventilation

    Get PDF
    Sedation is often necessary to optimize care for critically ill children requiring mechanical ventilation. If too light or too deep, however, sedation can cause significant adverse reactions, making it important to assess the degree of sedation and maintain its optimal level. We evaluated the efficacy of the COMFORT scale in assessing optimal sedation in critically ill children requiring mechanical ventilation. We compared 12 month data in 21 patients (intervention group), for whom we used the pediatric intensive care unit (PICU) sedation protocol of Asan Medical Center (Seoul, Korea) and the COMFORT scale to maintain optimal sedation, with the data in 20 patients (control group) assessed before using the sedation protocol and the COMPORT scale. Compared with the control group, the intervention group showed significant decreases in the total usage of sedatives and analgesics, the duration of mechanical ventilation (11.0 days vs. 12.5 days) and PICU stay (15.0 days vs. 19.5 days), and the development of withdrawal symptoms (1 case vs. 7 cases). The total duration of sedation (8.0 days vs. 11.5 days) also tended to decrease. These findings suggest that application of protocol-based sedation with the COMPORT scale may benefit children requiring mechanical ventilation
    • …
    corecore