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ABSTRACT 

Background: Microcalcifications in atherosclerotic plaques are destabilizing, predict adverse 

cardiovascular events, and are associated with increased morbidity and mortality. 18F-fluoride 

PET/CT imaging has demonstrated promise as a useful clinical diagnostic tool in identifying high 

risk plaques; however, there is confusion as to the underlying mechanism of signal amplification 

seen in PET-positive, CT-negative image regions. This study tested the hypothesis that 18F-

fluoride PET/CT can identify early microcalcifications.  

Methods and Results: 18F-fluoride signal amplification derived from microcalcifications was 

validated against near infrared fluorescence (NIRF) molecular imaging and histology using an in 

vitro 3D hydrogel collagen platform, ex vivo human specimens, and a mouse model of 

atherosclerosis. Microcalcification size correlated inversely with collagen concentration. The 18F-

fluoride ligand bound to microcalcifications formed by calcifying vascular smooth muscle cell-

derived extracellular vesicles in the in vitro 3D collagen system and exhibited an increasing signal 

with an increase in collagen concentration (0.25mg/ml collagen - 33.8x102±12.4x102 CPM; 0.5 

mg/ml collagen - 67.7x102±37.4x102 CPM, p=0.0014), suggesting amplification of the PET signal 

by smaller microcalcifications. We further incubated human atherosclerotic endarterectomy 

specimens with clinically-relevant concentrations of 18F-fluoride. The 18F-fluoride ligand labeled 

microcalcifications in PET-positive, CT-negative regions of explanted human specimens as 

evidenced by 18F-fluoride PET/CT imaging, NIRF and histological analysis. Additionally, the 18F-

fluoride ligand identified micro- and macrocalcifications in atherosclerotic aortas obtained from 

LDLr-deficient mice.  

Conclusions: Our results suggest that 18F-fluoride PET signal in PET-positive, CT-negative 

regions of human atherosclerotic plaques is the result of developing microcalcifications, and high 

surface area in regions of small microcalcifications may amplify PET signal. 
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CLINICAL PERSPECTIVE 

Early microcalcification is associated with atherosclerotic plaque rupture in contrast to advanced 

later macrocalcification that potentially contributes to plaque stability. 18F-fluoride positron 

emission tomography (PET) is believed to identify these regions of microcalcification. The 

objective of this manuscript was to evaluate the mechanism of 18F-fluoride binding in 

atherosclerotic plaque using an in vitro microcalcification model and ex vivo human tissue, and to 

confirm feasibility for identification of atherosclerotic plaques with microcalcifications in an in vivo 

mouse model. 18F-fluoride preferentially bound to the surface of nanocrystalline hydroxyapatite in 

regions that were remote from macrocalcific deposits.  Moreover, the intensity of the 18F-fluoride 

signal increased with smaller sized crystals of hydroxyapatite and was associated 

with histological markers of osteogenic activity. These novel mechanistic insights support 18F-

fluoride PET as a marker of microcalcification and a means of identifying coronary and carotid 

plaques with an adverse morphology. Clinical trials are ongoing to assess the prognostic utility of 
18F-fluoride PET imaging in patients at high risk of recurrent plaque rupture events. 
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INTRODUCTION 

Coronary artery calcium is a common feature of atherosclerosis, and quantification of coronary 

artery calcium from computed tomographic scans predicts adverse coronary heart disease events 

1-3. Coronary artery calcification is a pathophysiologic process that is intrinsic to the atherosclerotic 

plaque and is triggered by inflammation as calcifying extracellular vesicles (EVs) are released 

from macrophages and vascular smooth muscle cells4-7. Large calcifications within the plaque 

form from microcalcifications, and microcalcifications result from the aggregation and fusion of 

individual calcifying EVs6, 8. Whereas large calcifications may provide biomechanical stability, 

microcalcifications (< 50 µm) that form within the fibrous cap intensify the incident stresses and 

can lead to microfractures and plaque rupture 9-19. Indeed, microcalcification is apparent in high-

risk atheroma, predicts adverse cardiovascular events, and is associated with increased morbidity 

and mortality4, 13, 17, 20-26. 

Computed tomography (CT) used in clinical applications has a resolution limit of approximately 

200 µm, and therefore is not conducive to detecting microcalcifications18, 19, 27-31. Other imaging 

methods, such as intravascular ultrasound and optical coherence tomography, with resolution 

thresholds of 100 and 10 µm, respectively, can detect calcification but require invasive 

angiographic assessment8, 32. Therefore, noninvasive methods to identify microcalcification in 

atherosclerotic plaques are needed to detect high-risk patients and improve prevention and 

treatment of coronary artery disease9, 13, 33-35. 

18F-fluoride positron emission tomography-computed tomography (PET/CT) is a sensitive and 

specific method for detecting microcalcification in high-risk atherosclerotic plaques ex vivo, 

despite relatively poor spatial resolution, is a highly reproducible technique for detection of early 

coronary artery calcification in vivo4, 9, 21, 36-38. Furthermore, the spatial resolution of 18F-fluoride 
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PET/CT is adequate for localization to specific regions of atherosclerosis9; it has been shown to 

identify high-risk and ruptured coronary plaques in patients with coronary artery disease32.  

PET/CT imaging has been shown to detect vulnerable atherosclerotic plaques, and regions that 

are PET-positive distal and proximal to advanced macrocalcifications9,24,37. It has been suggested 

that the positive signal seen in these regions is due to developing microcalcifications surrounding 

macrocalcifications. These regions of microcalcifications have previously been associated with 

high-PET and low-CT signals. Because PET imaging has poorer resolution than CT imaging, the 

increased PET signal may be due to signal amplification resulting from increased surface area 

and, consequently, more binding sites, on microcalcifications compared to larger calcifications. It 

has been suggested that the CT-negative, PET-positive signal observed adjacent to CT-positive 

regions is an artifact due to the partial volume effect39. The goal of this study is to determine the 

specificity with which the 18F-fluoride signal associates with microcalcifications and, furthermore, 

whether the PET signal is amplified due to increased surface area. 

Since microcalcification detection lies below the resolution of current imaging modalities, and 

therefore is difficult to monitor in vivo, we previously developed a 3D collagen hydrogel platform, 

which allows the growth of microcalcifications to be followed in vitro8. In order to determine if the 

increased PET signal is due to signal amplification resulting from microcalcifications, and address 

the lingering controversy in the field, this study utilized a controllable 3D hydrogel model of fibrous 

cap to simulate microcalcification growth, as well as comparative ex vivo analysis of calcified 

human atherosclerotic plaques and a mouse model of atherosclerosis.   

 

METHODS                                                                                               

The data and study materials will be available to other researchers for purposes of reproducing 

the results or replicating the procedure. 
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The following experiments were conducted in accordance with Brigham and Women’s Hospital 

research policies. The Institutional Animal Care and Use committees at Beth Israel Deaconess 

Medical Center and at Brigham and Women’s Hospital approved all animal procedures. 

Calcium affinity study 

To determine the affinity of calcium salts with markers of microcalcification, biologically relevant 

calcium salts found in atherosclerotic plaques were incubated with a near infrared fluorescence 

(NIRF) molecular imaging agent and the signals were quantified. Ten mg each of hydroxyapatite 

(Sigma-Aldrich, 289396-25G), calcium phosphate (Sigma-Aldrich, 900205-50G), calcium 

pyrophosphate (Sigma-Aldrich, 401552-25G), calcium oxalate (Sigma-Aldrich, 455997-5G) and 

calcium carbonate (Sigma-Aldrich, C4830-100G) were incubated with a NIRF calcium tracer 

(OsteoSense680, Perkin Elmer, NEV10020EX). The minerals were incubated with 1 ml of a 200-

fold dilution of the stock solution for one hour at room temperature without light, in a rotator. 

Subsequently, they were washed 3 times with a 40-fold excess of PBS by centrifugation at 10.000 

g for 15 minutes, followed by removal of the supernatant and resuspension with PBS. Afterwards 

they were imaged by fluorescence microscopy on an Eclipse 80i microscope (Nikon, Melville, NY, 

USA). Bright field and fluorescence images were taken and analyzed by thresholding for visible 

mineral crystals. Both values from bright field and fluorescence image analyses were matched 

per image taken to determine the fluorescence signal per amount of mineral. 

An additional 10 mg of each of the minerals were incubated for one hour with 1 ml of 18F-fluoride 

solution with an activity of 10 µCi/ml at room temperature without light in a rotator and afterwards 

was washed 3 times with a 40-fold excess of PBS. The radioactivity of the minerals was measured 

with a gamma well counter (Wizard2 Gamma Counter, Perkin Elmer) and the minerals were 

exposed overnight to a storage phosphor imaging plate for autoradiography. 

In vitro microcalcification model 
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Human coronary artery smooth muscle cells (SMCs, PromoCell) passages 3-5 were grown to 

confluence and cultured in control media (DMEM with 10% fetal bovine serum and 1% 

penicillin/streptomycin) and in procalcifying media consisting of control media with the addition of 

10 nM dexamethasone, 100 µM L-ascorbic acid, and 10 mM β-glycerophosphate. Media were 

replaced every 3 days. The culture media were replaced at 7, 14, and 21 days with media 

containing the same components, except that 0.1% fetal bovine serum was used to reduce noise 

caused by EVs present in the serum. After 24 hours, the 0.1% fetal bovine serum-media were 

collected and centrifuged for 5 min at 1,000 g to remove contaminants such as apoptotic bodies 

and cell debris. The resulting supernatant was stored at -80 °C. 

Collagen hydrogels for in vitro formation of microcalcifications were prepared by slowly increasing 

the pH of concentrated rat tail collagen stored in an acetic acid solution (BD Biosciences) to 7-8, 

thereby leading to formation of a collagen network8. The previously collected and concentrated 

EVs were then added to the hydrogels and incubated for 5 days. The hydrogels were incubated 

with a NIRF calcium tracer overnight and imaged by fluorescence and confocal microscopy. For 

PET tracer analysis, the hydrogels were incubated for one hour with a solution of 18F-fluoride with 

an activity of 1 µCi/ml, washed three times with PBS, and placed in reaction tubes. The activity 

was measured using a gamma well counter (Wizard2 Gamma Counter, Perkin Elmer). 

18F-fluoride µPET-CT of carotid endarterectomy and coronary arteries specimens 

Carotid artery specimens (n=2) were obtained with ethical approval and informed consent from 

patients undergoing carotid endarterectomy (National Health Service West of Scotland Research 

Ethics Committee 12/WS/0227). Atherosclerotic sections of left main coronary arteries (n=2) were 

obtained with ethical approval and informed relative authorization from the next of kin from victims 

of sudden death at the time of autopsy (National Health Service South East Scotland Research 

Ethics Committee 14/SS/1090). Tissue was immediately fresh frozen at -80 degrees Celsius. 
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Thawed non-decalcified carotid artery and coronary artery specimens were incubated for 60 

minutes in 18F-fluoride 100kBq/mL solution (10.5MBq 18F-NaF in 99.5mLs 0.9% NaCl). 

Specimens were twice washed in 10mLs 0.9% NaCl for 5 minutes to remove unbound 18F-

fluoride. Specimens were scanned using high-resolution µPET (1:5 coincidence mode) and CT 

(semi-circular full trajectory, maximum field of view, 480 projections, 50 kVp, 300 ms and 1:4 

binning) (Mediso nanoScan PET/CT, Mediso Medical Imaging Systems, Hungary). PET data were 

reconstructed using Mediso’s iterative Tera-Tomo 3D reconstruction algorithm using 4 iterations, 

6 subsets, full detector model, normal regularization, spike filter on, voxel size 0·6 mm and 400-

600 keV energy window. µPET-CT images were analyzed on an OsiriX workstation (OsiriX 

version 7.5.1, 64-bit, OsiriX Imaging Software, Geneva, Switzerland). μPET and μCT were 

acquired sequentially in the same field of view with no distortion of the alignment, thus ensuring 

direct co-localization of PET and CT datasets. Routine quality control/quality assurance 

procedures are performed on the preclinical PET/CT system to ensure that co-registration is 

within an acceptable range set by the manufacturer. 

Histological Analyses 

Samples were embedded in optimal cutting temperature compound (O.C.T.) and stored at -20 °C 

until use. Tissues were sectioned in areas that were PET-positive and CT-negative and cut into 

5 µm thick sections for further analyses. NIRF calcium tracer was used in a 1:200 dilution in PBS 

and applied to the sections overnight and stored at 4 °C. Additional stains were used to identify 

calcifications within the sections and to verify the results of the NIRF tracer. In addition, we used 

von Kossa Stain (American MasterTech, KTVKO) to detect calcification. The tissue sections were 

fixed with formalin, covered in 5% silver nitrate solution, and then placed under UV light for 1 hour. 

The slides were then rinsed with 5% sodium thiosulfate and stained with Nuclear Red Fast stain. 

Finally, we used the VECTOR Red Alkaline Phosphatase Substrate kit (SK-5100) to detect 

osteogenic activity and early microcalcifications. We mixed the reagents included in the kit with 5 
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mL of 100mM Tris-HCl (pH 8.5) buffer as described in the product protocol. We covered the 

sections with the solution for 1 hour, and then rinsed the slides in Tris-HCl (pH 8.5) buffer. The 

samples were then stained for nuclei using Harris hematoxylin. 

18F-fluoride autoradiography of histological sections 

Tissue sections for autoradiography were washed in PBS and incubated for one hour in 18F-

fluoride solution with an activity of 1 µCi/ml. Subsequently, the sections were again washed with 

PBS, dried, and exposed to a charged phosphorous plate overnight. The plate was scanned 

afterwards, and autoradiograms were compared to NIRF images of the same sections obtained 

using a Nikon A1 confocal microscope (Nikon, USA). The image was divided into four quadrants, 

and the total signal per quadrant was determined for both autoradiography and NIRF using the 

mean intensity value per quadrant. Values of identical quadrants were matched, and correlation 

was determined using the Pearson method. 

Arterial calcification mouse model 

30-week-old LDLr -/- male mice (n=10) that had been fed an atherogenic high-fat, high-cholesterol 

(HF/HC) diet (21% fat and 1.25% cholesterol, Research Diets D12108C, New Brunswick, NJ), a 

model of vascular calcification, for 15 weeks were studied. Age-matched wild-type C57BL/6 mice 

(n=5, Jackson Laboratory, Bar Harbor, ME) were used as controls. The Institutional Animal Care 

and Use committees at Beth Israel Deaconess Medical Center and at Brigham and Women’s 

Hospital approved all animal procedures. 

Mice were injected with a NIRF imaging agent (OsteoSense680, Perkin Elmer) 24 hours before 

aorta extraction. After euthanasia, aortas were perfused with saline, extracted and imaged with a 

fluorescence reflectance imaging (FRI) Kodak imager to determine the fluorescence signal. The 

aortas were then incubated for one hour in a solution of 18F-fluoride with an activity of 10 µCi/ml. 

After washing three times with PBS, activity was measured using the well counter. The aortas 
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were dipped in deionized-H2O and mounted onto platforms before the PET/CT scanning took 

place. After overnight storage at 4o, aortas were embedded in O.C.T. compound for further 

histological analyses. 

Statistical Analysis 

Quantitative data are given as mean ± standard deviation. The number of independent 

experiments is indicated as n. Statistical packages within GraphPad Prism were used to 

determine data normality and variance estimation. Differences between control and compound 

fluorescence signals were evaluated using the Kruskal-Wallis test with Dunn’s multiple 

comparison test. The two-way ANOVA analysis was used for determining statistical significance 

across labeling methods and collagen concentration. The Welch’s correction for t-tests was used 

for non-matching sample sizes. A linear Pearson correlation method was used for correlative 

analyses for NIRF vs. 18F-fluoride measurements. Considering the user-defined image quadrant 

as a random effect, we modeled the correlation between NIRF vs. 18F-fluoride for all quadrants 

combined (‘nlme’ R package). For each quadrant separately, we also tested whether any given 

histological section was an influential outlier by performing a Jackknife resampling method 

(Supplemental Material)40. For a variance component analysis (VCA), we employed the ‘VCA’ R 

package. P-values of p<0.05 were considered significant. 

 

RESULTS 

NIRF calcium tracer and 18F-fluoride show preferential affinity for hydroxyapatite 

The NIRF calcium tracer exhibited high affinity for hydroxyapatite when compared with calcium 

phosphate, calcium oxalate, and calcium carbonate (Fig. 1A). The NIRF calcium tracer exhibited 

some affinity for pyrophosphate, but affinity was 85% less than that of the hydroxyapatite. 
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Compared to hydroxyapatite, NIRF signal was reduced by 98.2% for calcium phosphate and 

98.5% for calcium oxalate and calcium carbonate. 18F-fluoride showed high affinity for 

hydroxyapatite at 13.9x105 counts per minute (CPM) when compared with calcium phosphate 

(0.27x105 CPM), calcium oxalate (0.13x105 CPM), and calcium carbonate (0.006x105 CMP) (Fig. 

1B). 18F-fluoride also showed decreased affinity for pyrophosphate by 36% at 8.91x105 CPM. 

Qualitative observations using fluorescence microscopy and autoradiography images (Fig. 1C 

and 1D) support these quantification results, displaying the highest signal in the hydroxyapatite 

samples. The 18F-fluoride autoradiogram also showed signal for the calcium pyrophosphate to a 

lesser degree than that of the hydroxyapatite. These findings suggest that both 18F-fluoride and 

the NIRF calcium tracer exhibit preferential binding for hydroxyapatite. 

In vitro microcalcification model 

To assess the specificity of the 18F-fluoride signal in an in vitro collagen hydrogel model of 

microcalcification formation, we used a mixture of radioactively labeled 18F-fluoride and unlabeled 

fluoride (Cold NaF) to test for nonspecific binding of the tracer to microcalcifications. Hydrogels 

incubated with 18F-fluoride (Hot NaF) exhibited significantly higher radioactive counts per minute 

(CPM) compared to untreated control hydrogels and hydrogels incubated with the Cold NaF 

mixture (p=0.0014). Our previous work demonstrated that microcalcifications grown in vitro 

decrease in size as collagen concentration increases8. Similar to that study, smaller and more 

numerous microcalcifications were observed with a NIRF calcium tracer in hydrogels with higher 

collagen content (Fig. 2B).  Autoradiography images indicated increased 18F-fluoride signal 

associated with the smaller microcalcifications in the collagen-rich hydrogels (Fig. 2C).  This 

suggests that an increase in the surface area of microcalcifications, due to an increase in the 

number of smaller microcalcifications (0.5 mg/ml collagen hydrogel), compared to fewer, larger 

microcalcifications (0.25 mg/ml collagen hydrogel), correlates with an increase in 18F-fluoride PET 

signal. 
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PET/CT of carotid endarterectomy and coronary artery specimens 

Explanted carotid endarterectomy and coronary artery (Fig. 3A) samples (n=4) were incubated in 

100kBq/mL 18F-fluoride and imaged using µPET-CT. Fused µPET/CT images of ex vivo coronary 

artery showed high 18F-fluoride activity in areas of coronary artery without CT-macrocalcification 

(Fig. 3B, 3C, 3D) with axial reconstruction confirming that binding colocalizes to discrete regions 

in the coronary artery wall (Fig. 3E). 3D volume rendered casts of ex vivo carotid endarterectomy 

specimens demonstrated 18F-fluoride binding to the samples with (Fig. 3F, G, I) and without 

macrocalcification (Fig. 3J, K and L). Transverse view of PET/CT images confirmed 18F-fluoride 

binding to the surface of exposed macrocalcified regions and non-calcified regions of the artery 

wall (Fig. 3H, I, and K (inset), and L (inset)). The discrete signal of 18F-fluoride activity in non-

calcified regions (PET-positive/CT-negative) suggests that 18F-fluoride binding cannot be 

explained by the presence of macrocalcification alone. 

Histological analyses of PET-positive and CT-negative areas of carotid endarterectomy samples  

Staining of PET-positive and CT-negative regions of carotid endarterectomy samples with a NIRF 

calcium tracer revealed the presence of microcalcifications within the sections (Fig. 4A). 

Autoradiography of consecutive sections after incubation with 18F-fluoride showed similar patterns 

of intensity-rich areas (Fig. 4B and 4C). The sections were visually aligned and the images were 

divided into quadrants to compare the fluorescent and PET signal intensities (Fig. 4D). A 

correlation analysis revealed a strong correlation between the fluorescence of the NIRF calcium 

tracer and 18F-fluoride (Fig. 4E; Pearson R = 0.8048, p = 0.0124).  

MicroPET/CT scan of calcified murine aortas  

NIRF molecular imaging of extracted murine aortas exhibited larger calcification areas within the 

LDLr-/- mouse aortas (0.28; n=7) compared to the aortas of wildtype mice (0.05; n=3) (WT, 

C57BL/6 mice, p<0.0001; Fig. 5A).  The LDLr-/- mouse aortas also exhibited higher positron 
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emission signals (1.03x105 CPM; n=7) than WT mouse aortas (0.08x105 CPM; n=3) after 

incubation with 18F-fluoride (p<0.0001; Fig. 5B).  µPET/CT scans of the aortas showed regions of 

high PET signal that were comparable to signal-rich areas within the fluorescence images (Fig. 

5C). To validate the detection of calcified areas with µPET/CT, histological analyses were 

performed on the aorta sections with high PET signal and fluorescence. The results confirmed 

the presence of macro-scale and micro-scale calcifications within the aorta, which correlate with 

fluorescence and PET imaging (Fig. 5C).  

 

Discussion  

The salient new findings from this study are that regions identified as PET-positive and CT-

negative with 18F-fluoride PET/CT imaging are due to the presence of developing 

microcalcifications within atherosclerotic plaque. 18F-fluoride and the NIRF molecular imaging 

showed preferentially high affinity for hydroxyapatite when compared with other biologically 

relevant calcium salts. The NIRF calcium tracer is already a well-established marker for 

cardiovascular calcification. Specifically, it has been demonstrated to visualize early 

microcalcifications in human samples and preclinical mouse models 8, 31, 41, 42. Therefore, we used 

this NIRF tracer as a corroborative marker for comparison to 18F-fluoride in ex vivo and in vitro 

settings. 18F-Fluoride is a highly sensitive radiotracer that has been used in oncological practice 

to image bone tumors4, 9, 43. More recently it has been found to exhibit uptake in atherosclerotic 

aorta and coronary arteries44, 45. Hydroxyapatite is a primary constituent of vascular calcification31, 

and the 18F-fluoride ion is incorporated into the hydroxyapatite structure through an exchange of 

the hydroxyl groups on the surface of the mineral resulting in fluorapatite35, 46, 47.  

18F-fluoride has favorable imaging properties as well, including minimal dissociation, tissue 

contrast between labeled and un-labeled tissues one hour after administration, rapid binding, and 

low radiotracer background21. The calcific portions of atherosclerotic plaque absorb 18F-fluoride 



 11 

selectively, with high affinity both in vitro and in vivo, and with no fluoride activity detected in the 

absence of calcification1, 15, 32. The 18F-fluoride ligand binds to the surface of the calcification, and 

the increased surface area of microcalcifications allows for better absorption15. In contrast, there 

is proportionally smaller radioactivity signal detected for macrocalcifications1, 15, 45, 46.  

In this study, 18F-fluoride demonstrated an affinity for cell-derived hydroxyapatite associated 

microcalcifications developed in vitro in a 3D collagen hydrogel system. When combined with 

unlabeled fluoride, 18F-fluoride demonstrated specific binding for microcalcifications in the 

hydrogels. Additionally, the presence of these calcifications was confirmed with a NIRF calcium 

tracer, a current imaging standard in calcification cardiovascular research. These results suggest 

that the 18F-fluoride tracer has the same affinity for organic hydroxyapatite derived from calcifying 

EVs from vascular smooth muscle cells. Our previous studies have demonstrated that hydrogels 

with a greater concentration of collagen have denser collagen networks and therefore limit the 

size to which microcalcifications can aggregate8. This results in an increase in the surface area 

of hydroxyapatite, if the total amount of calcification remains the same. Smaller, more numerous 

microcalcifications form as the collagen concentration increases. It was found that higher 

concentrations of collagen displayed higher levels of 18F-fluoride, suggesting that an amplification 

in 18F-fluoride signal is seen with the increased surface area. 

In ex vivo carotid endarterectomy samples and coronary artery samples, a 18F-fluoride PET signal 

is seen not just in areas of calcification, as identified by simultaneous CT imaging, but in non-

calcified areas, both adjacent to and distal from calcifications. These results are consistent with 

those reported in earlier studies9, 21, 35, 48. The histological analyses of the areas with positive PET 

signal and negative CT signal revealed the presence of microcalcifications. This was first 

confirmed with the use of molecular imaging with NIRF calcium tracer, which is able to 

fluorescently tag microcalcifications. Adjacent tissue sections incubated with 18F-fluoride 

displayed a similar pattern of signal, and a significant correlation was observed between both 18F-
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fluoride and the NIRF signal. These findings suggest that the amplified PET signal that was 

observed in non-calcified areas of ex vivo sections was due to the presence of microcalcifications 

that were not detected by CT imaging. The amplification of the signal is likely due to the increased 

surface area of the microcalcifications.  

Comparison of in vivo 18F-fluoride µPET/CT imaging with ex vivo NIRF molecular imaging of 

atherosclerotic mouse aortas, demonstrated a similar signal pattern with correlation observed 

between the techniques. Histological analysis of the tissue sections with positive 18F-fluoride 

signal confirmed the presence of calcification. Alkaline phosphatase staining for early osteogenic 

activity and staining with NIRF calcium tracer both displayed relatively more signal when 

compared with von Kossa staining that detects phosphate groups in mature hydroxyapatite 

crystals. However, alkaline phosphatase and NIRF calcium stains are known to be more sensitive 

than von Kossa staining31 and might indicate early-stage microcalcification. These findings 

suggest that 18F-fluoride µPET/CT can identify microcalcifications in vivo and that the 

microcalcifications are the reason for PET signal amplification. 

Notably, 18F-fluoride uptake has been associated with patient populations with greater 

cardiovascular risk factor burden. 18F-fluoride PET/CT detects microcalcification in patients with 

unstable manifestations of coronary atherosclerosis6, 10, 15, 32, 35, and patients with 18F-fluoride 

uptake are more likely to have an increase in Framingham risk prediction scores, previous major 

adverse cardiac events, established coronary artery disease, angina, and revascularization9. The 

relatively low cost of the ligand and the excellent interobserver repeatability make it a strong 

candidate for clinical use35. Although it has been postulated that PET positive regions extending 

beyond CT positive regions can represent an artifact caused by partial-volume effects39, our study 

demonstrates that the 18F-fluoride signal is associated with microcalcifications too small to be 

detected by CT-imaging. The data show that the 18F-fluoride ligand tags microcalcifications in a 

controllable 3D hydrogel model of fibrous cap progressively with increased surface area of 
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microcalcifications, and that these results can be translated to ex vivo analysis of human tissues, 

as well as mouse models of atherosclerosis. Our ex vivo incubation model may not exactly 

recreate in vivo conditions where 18F-fluoride is delivered intravenously and where partial volume 

effects may affect the coronary signal. Further work needs to be done to differentiate between 

false positives and false negatives in 18F-fluoride PET/CT imaging; however, it is highly likely that 

18F-fluoride signal in PET-positive and CT-negative regions is due to the presence of 

microcalcifications. Additionally, further studies are required to determine if these results are 

possibly due to an increase in the surface area of the overall calcification.  

18F-fluoride PET/CT might have a role in evaluating patients with atherosclerotic disease, 

particularly by identifying areas of microcalcification in coronary arteries, implying the presence 

of vulnerable or recently ruptured plaques. Two ongoing clinical trials are using this radiotracer to 

assess whether 18F-fluoride has prognostic utility in patients with myocardial infarction 

(NCT02278211) and if 18F-fluoride can be used to stratify patients to emerging therapeutic 

interventions (NCT02110303). This manuscript adds to the growing body of knowledge that 

plaque mineralization is an active process and may be a target for clinical intervention. Early 

detection of unstable plaques could facilitate initiation and modulation of treatment to help prevent 

cardiovascular events. In conclusion, the findings of this study suggest that areas of 

microcalcification in developing atherosclerotic plaques are highly correlated with signal 

amplification of the 18F-fluoride ligand when imaged with 18F-fluoride PET/CT.  
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Figure Legends 

Figure 1. Affinity study of calcium salts with two markers for microcalcification - a near 

infrared fluorescence (NIRF) calcium tracer, and 18F-fluoride. A, Signal quantification of NIRF 

tracer for individual calcium salts, and a Kruskal-Wallis test with Dunn’s multiple comparison test: 

Control – no mineral added (0.0±0.0, 0.0% of HA), HA – Hydroxyapatite (0.422±0.304, p<0.0001), 

PO4 – Calcium Phosphate (0.008±0.011, 1.8% of HA, p=0.1625), PP – Calcium Pyrophosphate 

(0.062±0.066, 14.8% of HA, p<0.001), Ox – Calcium Oxalate (0.006±0.008, 1.5% of HA, 

p=0.0133), CO3 – Calcium Carbonate (0.006±0.008, 1.5% of HA, p=0.1237). B, Signal 

quantification of radioactively labelled 18F-fluoride for different calcium salts, and a Kruskal-Wallis 

test with Dunn’s multiple comparison test: Control (0.007x105±0.010x105 CPM, 0.05% of HA), HA 

(13.9x105±0.7x105 CPM, p=0.0066), PO4 (0.27x105±0.08x105 CPM, 1.9% of HA, p=0.3323), PP 

(8.91x105±0.94x105  CPM, 64.0% of HA, p=0.0581), Ox (0.13x105±0.01x105 CPM, 0.9% of HA, 

p>0.9999), CO3 (0.006x105±0.005x105 CPM, 0.04% of HA, p>0.9999). C, Fluorescence images 

of different calcium salts after incubation with NIRF calcium tracer (scale bars, 100 µm). D, 

Autoradiograms of different calcium salts after incubation with 18F-fluoride (scale bars, 0.25 mm). 

Figure 2. Collagen hydrogels demonstrate affinity of 18F-fluoride for microcalcifications. A, 

Quantification of radioactive signal of 18F-NaF bound to microcalcifications within collagen 

hydrogels of two different collagen concentrations and two-way ANOVA analysis. Control – 

collagen hydrogels incubated without extracellular vesicles (0.25 mg/ml - 0.88x102±0.02x102 

CPM; 0.5 mg/ml - 0.85x102±0.04 x102 CPM). Cold NaF - a mixture of radioactively labeled 18F-

fluoride and unlabeled fluoride to test for nonspecific binding of the tracer to microcalcifications 

(0.25 mg/ml - 2.59x102±1.62x102 CPM; 0.5 mg/ml - 5.67x102±2.79x102 CPM). Hot NaF – 

radioactively labeled 18F-fluoride for total binding (0.25 mg/ml - 33.8x102±12.4x102 CPM; 0.5 

mg/ml - 67.7x102±37.4x102 CPM) (p=0.0014). P-value of the labeling method = 0.0014, p-value 

associated with collagen concentration = 0.2119, p-value of the interaction = 0.2956. B, 
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Fluorescence microscopy of microcalcifications in collagen hydrogels with microcalcifications 

after incubation with bisphosphonate-based fluorescent tracer (scale bars 100 µm). Two different 

collagen concentrations were used for the hydrogels. C, NIRF and autoradiography of 

microcalcifications in 3D collagen hydrogels after incubation with a NIRF tracer or 18F-fluoride, 

respectively (scale bars 10 mm). 

Figure 3. Coronary artery (a-e) and carotid endarterectomy specimens (f-l) 18F-fluoride 

µPET/CT. A, Explanted coronary artery specimens were incubated in 100kBq/mL 18F-fluoride 

(t=60 mins). B, 3-dimensional volume rendered casts colocalizes binding to coronary artery 

sections with paucity of uptake in the surrounding epicardial fat and myocardium C, µCT and, D, 

fused images enabled, E, detailed axial reconstruction of 18F-fluoride binding in non-calcified 

coronary artery walls. F & J, 3-dimensional volume rendered casts of 18F-fluoride binding in 

explanted carotid artery specimens. G & K, sagittal CT colocalizes 18F-fluoride binding to exposed 

surfaces of hydroxyapatite on macrocalcified tissue. H, I, K (inset) & l (inset), focal 18F-fluoride 

binding is present in non-calcified regions of the carotid artery wall. 

Figure 4. Quantitative histological analysis of PET-positive/CT-negative areas of carotid 

endarterectomy sample A, Location of section taken for histological analysis of carotid 

endarterectomy sample. B, Confocal microscopy imaging of carotid endarterectomy section after 

incubation with a NIRF calcium tracer (scale bar 2 mm). C, Autoradiography imaging of the same 

histological section after incubation with 18F-fluoride (scale bar 2 mm). D, Confocal and 

autoradiography images were divided into four quadrants and each quadrant of the images was 

quantified (scale bars 2 mm). E, Linear correlation between NIRF signal and 18F-fluoride 

autoradiography signal (Pearson R = 0.8048, p = 0.0124; n = 6 histological sections were 

analyzed).  
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Figure 5. µPET/CT scan of calcified murine aortas shows presence of macro- and 

microcalcification and correlation between NIRF and PET signals. A, Ex vivo fluorescence, 

and B, ex vivo autoradiography imaging quantification of the calcified fraction of murine aortas for 

knockout (p<0.0001, Welch’s t-test of log2(CPM) values) C, Respective murine aortic regions 

were sectioned and stained with von Kossa, ALP, and NIRF tracers to confirm the presence of 

calcification. Stains show consecutive sections (5 µm) (scale bars, NIRF and µPET/CT = 5 mm; 

von Kossa, ALP, and NIRF = 200 µm).  













SUPPLEMENTAL MATERIAL 

 

Supplemental Figure 1. Linear correlations within quadrants obtained from sections 
(Pearson R for Q1=0.5605, Q2=0.6979, Q3=-0.3358 and Q4=0.8150). We found that 
variance in the model is attributed to random errors from the four image quadrants 
(87.58% of total variance, Supplementary Table 1). Therefore, we calculated Pearson’s 
R within the four quadrants, respectively (Fig. 4F).  Quadrant 3 (Q3) shows a negative 
correlation, while the other quadrants show positive correlations between the signals.  We 
speculated that histological section 6 (S6) is an outlier causing a negative correlation (Fig. 
4F).  We conducted Jackknife resampling and calculated Pearson’s R to test if S6 is an 
outlier in Q3 (Supplementary Table 2). The resampled correlation coefficients without S6 
(r = -0.3798 ~ 0.8611) are much higher than ones with S6 (r = -0.6819 ~ -0.3141), 
indicating that S6 is an influential outlier causing a negative correlation in Q3.   These 
findings demonstrate the presence of microcalcifications in areas identified as PET-
positive and CT-negative during ex vivo PET/CT imaging of explanted specimens. 

  



Supplemental Table 1. Variance component analysis results. We conducted variance 
component analysis (VCA) for a mixed model for a correlational analysis between NIRF 
signal and 18F-fluoride autoradiography signal.  CV: Coefficient of variation. 

 

 

 

Supplemental Table 2. Pearson’s R in quadrants with Jackknife resampling. We 
conducted Jackknife resampling for all six sections with or without section 6 (S6) in 
quadrant 3 and calculated Pearson’s r for signals between NIRF and 18F-fluoride.  S6: 
Histological section 6. 
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