53 research outputs found

    Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream

    Get PDF
    Streams draining peatlands export large quantities of carbon in different chemical forms and are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique information on the source and rate that carbon is cycled through ecosystems, as has recently been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost from peatland streams by evasion (degassing). Peatland streams also have the potential to release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition (bubbling) has been previously reported, diffusive emissions have not. We describe methods that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded from a small peatland stream draining a temperate raised mire. Methane was aged between 1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded from the stream were derived from different source areas, with most evaded CO2 originating from younger layers located nearer the peat surface compared to CH4. The study demonstrates the insight that can be gained into peatland carbon cycling from a methodological development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected at the same time and in the same way

    Limited contribution of permafrost carbon to methane release from thawing peatlands

    Get PDF
    Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands

    Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology

    Get PDF
    Author Posting. Β© Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Paleolimnology 39 (2008): 43-60, doi:10.1007/s10933-007-9094-1.This study demonstrates use of compound-specific radiocarbon analysis (CSRA) for dating Holocene lacustrine sediments from carbonate-hosted Ordy Pond, Oahu, Hawaii. Long-chain odd-numbered normal alkanes (n-alkanes), biomarkers characteristic of terrestrial higher plants, were ubiquitous in Ordy Pond sediments. The Ξ΄13C of individual n-alkanes ranged from βˆ’29.9 to βˆ’25.5‰, within the expected range for n-alkanes synthesized by land plants using the C3 or C4 carbon fixation pathway. The 14C ages of n-alkanes determined by CSRA showed remarkably good agreement with 14C dates of rare plant macrofossils obtained from nearby sedimentary horizons. In general, CSRA of n-alkanes successfully refined the age-control of the sediments. The sum of n-alkanes in each sample produced 70–170 ΞΌg of carbon (C), however, greater age errors were confirmed for samples containing less than 80 ΞΌg of C. The 14C age of n-alkanes from one particular sedimentary horizon was 4,155 years older than the value expected from the refined age-control, resulting in an apparent and arguable age discrepancy. Several lines of evidence suggest that this particular sample was contaminated by introduction of 14C-free C during preparative capillary gas chromatography. This study simultaneously highlighted the promising potential of CSRA for paleo-applications and the risks of contamination associated with micro-scale 14C measurement of individual organic compounds.This project was funded by Petroleum Research Fund (PRF #40088-ACS) and in part by Sigma Xi, The Scientific Research Society (Grants in aid of research, 2003)

    Purification and Characterization of a Novel Hypersensitive Response-Inducing Elicitor from Magnaporthe oryzae that Triggers Defense Response in Rice

    Get PDF
    <div><h3>Background</h3><p><em>Magnaporthe oryzae</em>, the rice blast fungus, might secrete certain proteins related to plant-fungal pathogen interactions.</p> <h3>Methodology/Principal Findings</h3><p>In this study, we report the purification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip1) secreted by <em>M. oryzae</em>. The protein fraction was purified and identified by de novo sequencing, and the sequence matched the genomic sequence of a putative protein from <em>M. oryzae</em> strain 70-15 (GenBank accession No. XP_366602.1). The elicitor-encoding gene <em>mohrip1</em> was isolated; it consisted of a 429 bp cDNA, which encodes a polypeptide of 142 amino acids with a molecular weight of 14.322 kDa and a pI of 4.53. The deduced protein, MoHrip1, was expressed in <em>E. coli</em>. And the expression protein collected from bacterium also forms necrotic lesions in tobacco. MoHrip1 could induce the early events of the defense response, including hydrogen peroxide production, callose deposition, and alkalization of the extracellular medium, in tobacco. Moreover, MoHrip1-treated rice seedlings possessed significantly enhanced systemic resistance to <em>M. oryzae</em> compared to the control seedlings. The real-time PCR results indicated that the expression of some pathogenesis-related genes and genes involved in signal transduction could also be induced by MoHrip1.</p> <h3>Conclusion/Significance</h3><p>The results demonstrate that MoHrip1 triggers defense responses in rice and could be used for controlling rice blast disease.</p> </div

    C mobilisation in disturbed tropical peat swamps: old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur

    Get PDF
    Southeast-Asian peat swamp forests have been significantly logged and converted to plantation. Recently, to mitigate land degradation and C losses, some areas have been left to regenerate. Understanding how such complex land use change affects greenhouse gas emissions is essential for modelling climate feedbacks and supporting land management decisions. We carried out field research in a Malaysian swamp forest and an oil palm plantation to understand how clear-felling, drainage, and illegal and authorized conversion to oil palm impacted the C cycle, and how the C cycle may change if such logging and conversion stopped. We found that both the swamp forest and the plantation emit centuries-old CO2 from their drainage systems in the managed areas, releasing sequestered C to the atmosphere. Oil palm plantations are an iconic symbol of tropical peatland degradation, but CO2 efflux from the recently-burnt, cleared swamp forest was as old as from the oil palm plantation. However, in the swamp forest site, where logging had ceased approximately 30 years ago, the age of the CO2 efflux was modern, indicating recovery of the system can occur. 14C dating of the C pool acted as a tracer of recovery as well as degradation and offers a new tool to assess efficacy of restoration management. Methane was present in many sites, and in higher concentrations in slow-flowing anoxic systems as degassing mechanisms are not strong. Methane loading in freshwaters is rarely considered, but this may be an important C pool in restored drainage channels and should be considered in C budgets and losses

    Vitamin D3 Deficiency Differentially Affects Functional and Disease Outcomes in the G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10Γ— the adequate intake improves functional outcomes in a mouse model of ALS

    Can an increase in autoantibody levels predict arthritis in arthralgia patients?

    No full text
    Retrospective studies have shown that anti-citrullinated protein antibodies (ACPA) and IgM rheumatoid factor (RF) often precede symptom onset of rheumatoid arthritis (RA) by many years, and the closer the individual comes to clinical arthritis the more positivity for either one or the combination is found, together with increasing levels(1, 2). To our knowledge no individual prediction models using autoantibody levels over time have been developed yet. In a prospective study we investigated whether change of ACPA and RF levels over time within individuals improves prediction of future arthritis in seropositive arthralgia patients
    • …
    corecore