161 research outputs found
Influenza and pneumococcal vaccine uptake among nursing home residents in Nottingham, England: a postal questionnaire survey
<p>Abstract</p> <p>Background</p> <p>Previous studies have shown influenza vaccine uptake in UK nursing home residents to be low. Very little information exists regarding the uptake of pneumococcal vaccine in this population. The formulation of policies relating to the vaccination of residents has been proposed as a simple step that may help improve vaccine uptake in care homes.</p> <p>Methods</p> <p>A postal questionnaire was sent to matrons of all care homes with nursing within the Greater Nottingham area in January 2006. Non respondents were followed up with up to 3 phone calls.</p> <p>Results</p> <p>30% (16/53) of respondents reported having a policy addressing influenza vaccination and 15% (8/53) had a policy addressing pneumococcal vaccination. Seasonal influenza vaccine coverage in care homes with a vaccination policy was 87% compared with 84% in care homes without a policy (p = 0.47). The uptake of pneumococcal vaccination was found to be low, particularly in care homes with no vaccination policy. Coverage was 60% and 32% in care homes with and without a vaccination policy respectively (p = 0.06). This result was found to be statistically significant on multivariate analysis (p = 0.03, R = 0.46)</p> <p>Conclusion</p> <p>The uptake of influenza vaccine among care home residents in the Nottingham region is relatively high, although pneumococcal vaccine uptake is low. This study shows that there is an association between pneumococcal vaccine uptake and the existence of a vaccination policy in care homes, and highlights that few care homes have vaccination policies in place.</p
FORM: An Australian method for formulating and grading recommendations in evidence-based clinical guidelines
Extent: 8p.BACKGROUND: Clinical practice guidelines are an important element of evidence-based practice. Considering an often complicated body of evidence can be problematic for guideline developers, who in the past may have resorted to using levels of evidence of individual studies as a quasi-indicator for the strength of a recommendation. This paper reports on the production and trial of a methodology and associated processes to assist Australian guideline developers in considering a body of evidence and grading the resulting guideline recommendations. METHODS: In recognition of the complexities of clinical guidelines and the multiple factors that influence choice in health care, a working group of experienced guideline consultants was formed under the auspices of the Australian National Health and Medical Research Council (NHMRC) to produce and pilot a framework to formulate and grade guideline recommendations. Consultation with national and international experts and extensive piloting informed the process. RESULTS: The FORM framework consists of five components (evidence base, consistency, clinical impact, generalisability and applicability) which are used by guideline developers to structure their decisions on how to convey the strength of a recommendation through wording and grading via a considered judgement form. In parallel (but separate from the grading process) guideline developers are asked to consider implementation implications for each recommendation. CONCLUSIONS: The framework has now been widely adopted by Australian guideline developers who find it to be a logical and intuitive way to formulate and grade recommendations in clinical practice guidelines.Susan Hillier, Karen Grimmer-Somers, Tracy Merlin, Philippa Middleton, Janet Salisbury, Rebecca Tooher and Adele Westo
A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments
Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals
Recommended from our members
Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra
Sensing the ocean biological carbon pump from space: A review of capabilities, concepts, research gaps and future developments
The element carbon plays a central role in climate and life on Earth. It is capable of moving among the geosphere,
cryosphere, atmosphere, biosphere and hydrosphere. This flow of carbon is referred to as the Earth’s carbon cycle. It is also intimately linked to the cycling of other elements and compounds. The ocean plays a fundamental role in Earth’s carbon cycle, helping to regulate atmospheric CO2 concentration. The ocean biological carbon pump (OBCP), defined as a set of processes that transfer organic carbon from the surface to the deep ocean, is at the heart of the ocean carbon cycle. Monitoring the OBCP is critical to understanding how the Earth’s carbon cycle is changing. At present, satellite remote sensing is the only tool available for viewing the entire surface ocean at high temporal and spatial scales. In this paper, we review methods for monitoring the OBCP with a focus on satellites. We begin by providing an overview of the OBCP, defining and describing the pools of carbon in the ocean, and the processes controlling fluxes of carbon between the pools, from the surface to the deep ocean, and among ocean, land and atmosphere. We then examine how field measurements, from ship and autonomous
platforms, complement satellite observations, provide validation points for satellite products and lead to a more
complete view of the OBCP than would be possible from satellite observations alone. A thorough analysis is then
provided on methods used for monitoring the OBCP from satellite platforms, covering current capabilities,
concepts and gaps, and the requirement for uncertainties in satellite products. We finish by discussing the potential for producing a satellite-based carbon budget for the oceans, the advantages of integrating satellite-based observations with ecosystem models and field measurements, and future opportunities in space, all with a view towards bringing satellite observations into the limelight of ocean carbon research
Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047
Will ocean acidification affect marine microbes?
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1-7, doi:10.1038/ismej.2010.79.The pH of the surface ocean is changing as a result of increases in
atmospheric carbon dioxide (CO2) and there are concerns about potential
impacts of lower pH and associated alterations in seawater carbonate
chemistry on the biogeochemical processes in the ocean. However, it is
important to place these changes within the context of pH in the present day
ocean, which is not constant; it varies systematically with season, depth and
along productivity gradients. Yet this natural variability in pH has rarely been
considered in assessments of the effect of ocean acidification on marine
microbes. Surface pH can change as a consequence of microbial utilisation
and production of carbon dioxide, and to a lesser extent other microbiallymediated
processes such as nitrification. Useful comparisons can be made
with microbes in other aquatic environments that readily accommodate very
large and rapid pH change. For example, in many freshwater lakes, pH changes
that are orders of magnitude greater than those projected for the 22nd century
oceans can occur over periods of hours. Marine and freshwater assemblages
have always experienced variable pH conditions. Therefore, an appropriate null
hypothesis may be, until evidence is obtained to the contrary, that major
biogeochemical processes in the oceans other than calcification will not be
fundamentally different under future higher CO2 / lower pH conditions.Funding from the Gordon and Betty Moore Foundation, and logistical support from
the Plymouth Marine Laboratory and the Center for Microbial Oceanography:
Research and Education (National Science Foundation grant EF-0424599) are
gratefully acknowledged
Genetic Knock-Down of Hdac3 Does Not Modify Disease-Related Phenotypes in a Mouse Model of Huntington's Disease
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expansion of a CAG/polyglutamine repeat for which there are no disease modifying treatments. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression and has been recapitulated across multiple HD models. Altered histone acetylation has been proposed to underlie this transcriptional dysregulation and histone deacetylase (HDAC) inhibitors, such as suberoylanilide hydroxamic acid (SAHA), have been shown to improve polyglutamine-dependent phenotypes in numerous HD models. However potent pan-HDAC inhibitors such as SAHA display toxic side-effects. To better understand the mechanism underlying this potential therapeutic benefit and to dissociate the beneficial and toxic effects of SAHA, we set out to identify the specific HDAC(s) involved in this process. For this purpose, we are exploring the effect of the genetic reduction of specific HDACs on HD-related phenotypes in the R6/2 mouse model of HD. The study presented here focuses on HDAC3, which, as a class I HDAC, is one of the preferred targets of SAHA and is directly involved in histone deacetylation. To evaluate a potential benefit of Hdac3 genetic reduction in R6/2, we generated a mouse carrying a critical deletion in the Hdac3 gene. We confirmed that the complete knock-out of Hdac3 is embryonic lethal. To test the effects of HDAC3 inhibition, we used Hdac3+/− heterozygotes to reduce nuclear HDAC3 levels in R6/2 mice. We found that Hdac3 knock-down does not ameliorate physiological or behavioural phenotypes and has no effect on molecular changes including dysregulated transcripts. We conclude that HDAC3 should not be considered as the major mediator of the beneficial effect induced by SAHA and other HDAC inhibitors in HD
Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells
Changes in the water permeability, aquaporin (AQP) activity, of leaf cells were investigated in response to different heavy metals (Zn2+, Pb2+, Cd2+, Hg2+). The cell pressure probe experiments were performed on onion epidermal cells as a model system. Heavy metal solutions at different concentrations (0.05 μM–2 mM) were used in our experiments. We showed that the investigated metal ions can be arranged in order of decreasing toxicity (expressed as a decrease in water permeability) as follows: Hg>Cd>Pb>Zn. Our results showed that β-mercaptoethanol treatment (10 mM solution) partially reverses the effect of AQP gating. The magnitude of this reverse differed depending on the metal and its concentration. The time course studies of the process showed that the gating of AQPs occurred within the first 10 min after the application of a metal. We also showed that after 20–40 min from the onset of metal treatment, the water flow through AQPs stabilized and remained constant. We observed that irrespective of the metal applied, the effect of AQP gating can be recorded within the first 10 min after the administration of metal ions. More generally, our results indicate that the toxic effects of investigated metal ions on the cellular level may involve AQP gating
Apnea of prematurity: from cause to treatment
Apnea of prematurity (AOP) is a common problem affecting premature infants, likely secondary to a “physiologic” immaturity of respiratory control that may be exacerbated by neonatal disease. These include altered ventilatory responses to hypoxia, hypercapnia, and altered sleep states, while the roles of gastroesophageal reflux and anemia remain controversial. Standard clinical management of the obstructive subtype of AOP includes prone positioning and continuous positive or nasal intermittent positive pressure ventilation to prevent pharyngeal collapse and alveolar atelectasis, while methylxanthine therapy is a mainstay of treatment of central apnea by stimulating the central nervous system and respiratory muscle function. Other therapies, including kangaroo care, red blood cell transfusions, and CO2 inhalation, require further study. The physiology and pathophysiology behind AOP are discussed, including the laryngeal chemoreflex and sensitivity to inhibitory neurotransmitters, as are the mechanisms by which different therapies may work and the potential long-term neurodevelopmental consequences of AOP and its treatment
- …