1,069 research outputs found
Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358
We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k=14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for ℓ=2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Asteroseismology
Asteroseismology is the determination of the interior structures of stars by
using their oscillations as seismic waves. Simple explanations of the
astrophysical background and some basic theoretical considerations needed in
this rapidly evolving field are followed by introductions to the most important
concepts and methods on the basis of example. Previous and potential
applications of asteroseismology are reviewed and future trends are attempted
to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar
Systems", eds. T. D. Oswalt et al., Springer Verla
Widening participation in higher education: student quantitative skills and independent learning as impediments to progression
The UK government's widening participation strategy, and the concomitant development of a mass higher education system, has imposed a variety of pressures on higher education institutions. Not least of these is the changing nature of the student population, and the assumptions that can be made about its skills and knowledge base. It should not be surprising that this rapid expansion of the higher education system has resulted in declining student progression and retention rates. This paper takes a case study approach and attempts to identify the range of factors that might explain the variability of student performance on a first year undergraduate introductory statistics module. The paper concludes that there are no simple predictors of success or failure. However, there is evidence to suggest that any innovations in delivery need to take account of individual student development and that the presumption that students can rapidly become independent learners upon initial entry to higher education is an unrealistic one
Qualitative study of the impact of an authentic electronic portfolio in undergraduate medical education
Background
Portfolios are increasingly used in undergraduate and postgraduate medical education. Four medical schools have collaborated with an established NHS electronic portfolio provider to develop and implement an authentic professional electronic portfolio for undergraduate students. We hypothesized that using an authentic portfolio would have significant advantages for students, particularly in familiarizing them with the tool many will continue to use for years after graduation. This paper describes the early evaluation of this undergraduate portfolio at two participating medical schools.
Methods
To gather data, a questionnaire survey with extensive free text comments was used at School 1, and three focus groups were held at School 2. This paper reports thematic analysis of students’ opinions expressed in the free text comments and focus groups.
Results
Five main themes, common across both schools were identified. These concerned the purpose, use and acceptability of the portfolio, advantages of and barriers to the use of the portfolio, and the impacts on both learning and professional identity.
Conclusions
An authentic portfolio mitigated some of the negative aspects of using a portfolio, and had a positive effect on students’ perception of themselves as becoming past of the profession. However, significant barriers to portfolio use remained, including a lack of understanding of the purpose of a portfolio and a perceived damaging effect on feedback
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
NHS health checks: a cross- sectional observational study on equity of uptake and outcomes
Background
The National Health Checks programme aims to reduce the incidence of cardiovascular diseases and health inequalities in England. We assessed equity of uptake and outcomes from NHS Health Checks in general practices in Bristol, UK.
Methods
A cross-sectional study using patient-level data, from 38 general practices. We descriptively analysed the socioeconomic status (SES) of patients invited and the SES and ethnicity of those attending. Logistic regression was used to test associations between invitation and attendance, with population characteristics.
Results
Between June 2010 to October 2014, 31,881 patients were invited, and 13,733 NHS Health Checks completed. 47% of patients invited from the three least and 39% from the two most-deprived index of multiple deprivation quintiles, completed a Check. Proportions of invited patients, by ethnicity were 64% non-black and Asian and 31% black and Asian. Men were less likely to attend than women (OR 0.73, 95% confidence interval 0.67 to 0.80), as were patients ≤ 49 compared to ≥ 70 years (OR 0.40, 95% confidence interval 0.65 to 0.83).
After controlling for SES and population characteristics, compared to patients with low CVD risk, high risk patients were more likely to be prescribed cardiovascular drugs (OR 6.2, 95% confidence interval 4.51 to 8.40). Compared to men, women (OR 01.18, 95% confidence interval 1.03 to 1.35) were more likely to be prescribed cardiovascular drugs, as were those ≤ 49 years (50–59 years, OR 1.42, 95% confidence intervals 1.13–1.79, 60–69 years, OR 1.60, 95% confidence intervals, 1.22–2.10, ≥ 70 years, OR 1.64, 95% confidence intervals, 1.14 to 2.35).
Controlling for population characteristics, the following groups were most likely to be referred to lifestyle services: younger women (OR 2.22, 95% CI 1.69 to 2.94), those in the most deprived IMD quintile (OR 3.22, 95% CI 1.63 to 6.36) and those at highest risk of CVD (OR, 2.77, 95% CI 1.91 to 4.02).
Conclusions
We found no statistically significant evidence of inequity in attendance for an NHS Health Check by SES. Being older or a woman were associated with better attendance. Targeting men, younger patients and ethnic minority groups may improve equity in uptake for NHS Health Checks
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces
The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
- …
