102 research outputs found

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Pre-Existing Isoniazid Resistance, but Not the Genotype of Mycobacterium Tuberculosis Drives Rifampicin Resistance Codon Preference in Vitro

    Get PDF
    Both the probability of a mutation occurring and the ability of the mutant to persist will influence the distribution of mutants that arise in a population. We studied the interaction of these factors for the in vitro selection of rifampicin (RIF)-resistant mutants of Mycobacterium tuberculosis. We characterised two series of spontaneous RIF-resistant in vitro mutants from isoniazid (INH)-sensitive and -resistant laboratory strains and clinical isolates, representing various M. tuberculosis genotypes. The first series were selected from multiple parallel 1 ml cultures and the second from single 10 ml cultures. RIF-resistant mutants were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) or by sequencing the rpoB gene. For all strains the mutation rate for RIF resistance was determined with a fluctuation assay. The most striking observation was a shift towards rpoB-S531L (TCG→TTG) mutations in a panel of laboratory-generated INH-resistant mutants selected from the 10-ml cultures (p<0.001). All tested strains showed similar mutation rates (1.33×10−8 to 2.49×10−7) except one of the laboratory-generated INH mutants with a mutation rate measured at 5.71×10−7, more than 10 times higher than that of the INH susceptible parental strain (5.46–7.44×10−8). No significant, systematic difference in the spectrum of rpoB-mutations between strains of different genotypes was observed. The dramatic shift towards rpoB-S531L in our INH-resistant laboratory mutants suggests that the relative fitness of resistant mutants can dramatically impact the distribution of (subsequent) mutations that accumulate in a M. tuberculosis population, at least in vitro. We conclude that, against specific genetic backgrounds, certain resistance mutations are particularly likely to spread. Molecular screening for these (combinations of) mutations in clinical isolates could rapidly identify these particular pathogenic strains. We therefore recommend that isolates are screened for the distribution of resistance mutations, especially in regions that are highly endemic for (multi)drug resistant tuberculosis

    Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons

    Get PDF
    The neocortex contains an unparalleled diversity of neuronal subtypes, each defined by distinct traits that are developmentally acquired under the control of subtype-specific and pan-neuronal genes. The regulatory logic that orchestrates the expression of these unique combinations of genes is unknown for any class of cortical neuron. Here, we report that Fezf2 is a selector gene able to regulate the expression of gene sets that collectively define mouse corticospinal motor neurons (CSMN). We find that Fezf2 directly induces the glutamatergic identity of CSMN via activation of Vglut1 (Slc17a7) and inhibits a GABAergic fate by repressing transcription of Gad1. In addition, we identify the axon guidance receptor EphB1 as a target of Fezf2 necessary to execute the ipsilateral extension of the corticospinal tract. Our data indicate that co-regulated expression of neuron subtype–specific and pan-neuronal gene batteries by a single transcription factor is one component of the regulatory logic responsible for the establishment of CSMN identity

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Varieties of Living Things: Life at the Intersection of Lineage and Metabolism

    Full text link

    Study of “Target Patterns” in a Phage-Bacterium System

    No full text

    Inactivation of Escherichia coli

    No full text
    corecore