129 research outputs found

    Meta-analysis of genome-wide linkage studies of asthma and related traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and allergy are complex multifactorial disorders, with both genetic and environmental components determining disease expression. The use of molecular genetics holds great promise for the identification of novel drug targets for the treatment of asthma and allergy. Genome-wide linkage studies have identified a number of potential disease susceptibility loci but replication remains inconsistent. The aim of the current study was to complete a meta-analysis of data from genome-wide linkage studies of asthma and related phenotypes and provide inferences about the consistency of results and to identify novel regions for future gene discovery.</p> <p>Methods</p> <p>The rank based genome-scan meta-analysis (GSMA) method was used to combine linkage data for asthma and related traits; bronchial hyper-responsiveness (BHR), allergen positive skin prick test (SPT) and total serum Immunoglobulin E (IgE) from nine Caucasian asthma populations.</p> <p>Results</p> <p>Significant evidence for susceptibility loci was identified for quantitative traits including; BHR (989 pedigrees, n = 4,294) 2p12-q22.1, 6p22.3-p21.1 and 11q24.1-qter, allergen SPT (1,093 pedigrees, n = 4,746) 3p22.1-q22.1, 17p12-q24.3 and total IgE (729 pedigrees, n = 3,224) 5q11.2-q14.3 and 6pter-p22.3. Analysis of the asthma phenotype (1,267 pedigrees, n = 5,832) did not identify any region showing genome-wide significance.</p> <p>Conclusion</p> <p>This study represents the first linkage meta-analysis to determine the relative contribution of chromosomal regions to the risk of developing asthma and atopy. Several significant results were obtained for quantitative traits but not for asthma confirming the increased phenotype and genetic heterogeneity in asthma. These analyses support the contribution of regions that contain previously identified asthma susceptibility genes and provide the first evidence for susceptibility loci on 5q11.2-q14.3 and 11q24.1-qter.</p

    C-Kit Binding Properties of Hesperidin (a Major Component of KMP6) as a Potential Anti-Allergic Agent

    Get PDF
    Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs). A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs (P<0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P<0.05). Our results show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders

    Anti-tumor necrosis factor-Α antibody treatment reduces pulmonary inflammation and methacholine hyper-responsiveness in a murine asthma model induced by house dust

    Full text link
    Background/Aims Recent studies documented that sensitization and exposure to cockroach allergens significantly increase children's asthma morbidity as well as severity, especially among inner city children. TNF-Α has been postulated to be a critical mediator directly contributing to the bronchopulmonary inflammation and airway hyper-responsiveness in asthma. This study investigated whether an anti-TNF-Α antibody would inhibit pulmonary inflammation and methacholine (Mch) hyper-responsiveness in a mouse model of asthma induced by a house dust extract containing both endotoxin and cockroach allergens. Methods A house dust sample was extracted with phosphate-buffered saline and then used for immunization and two additional pulmonary challenges of BALB/c mice. Mice were treated with an intravenous injection of anti-TNF-Α antibody or control antibody 1  h before each pulmonary challenge. Results In a kinetic study, TNF-Α levels within the bronchoalveolar lavage (BAL) fluid increased quickly peaking at 2 h while BAL levels of IL-4, IL-5, and IL-13 peaked at later time-points. Mch hyper-responsiveness was measured 24 h after the last challenge, and mice were killed 24 h later. TNF inhibition resulted in an augmentation of these Th2 cytokines. However, the allergic pulmonary inflammation was significantly reduced by anti-TNF-Α antibody treatment as demonstrated by a substantial reduction in the number of BAL eosinophils, lymphocytes, macrophages, and neutrophils compared with rat IgG-treated mice. Mch hyper-responsiveness was also significantly reduced in anti-TNF-Α antibody-treated mice and the pulmonary histology was also significantly improved. Inhibition of TNF significantly reduced eotaxin levels within the lung, suggesting a potential mechanism for the beneficial effects. These data indicate that anti-TNF-Α antibody can reduce the inflammation and pathophysiology of asthma in a murine model of asthma induced by a house dust extract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73609/1/j.1365-2222.2005.02407.x.pd

    Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Get PDF
    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible

    Genetic Associations and Architecture of Asthma-COPD Overlap

    Get PDF
    BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma

    Medroxyprogesterone improves nocturnal breathing in postmenopausal women with chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Progestins as respiratory stimulants in chronic obstructive pulmonary disease (COPD) have been investigated in males and during wakefulness. However, sleep and gender may influence therapeutic responses. We investigated the effects of a 2-week medroxyprogesterone acetate (MPA) therapy on sleep and nocturnal breathing in postmenopausal women. METHODS: A single-blind placebo-controlled trial was performed in 15 postmenopausal women with moderate to severe COPD. A 12-week trial included 2-week treatment periods with placebo and MPA (60 mg/d/14 days). All patients underwent a polysomnography with monitoring of SaO(2 )and transcutaneous PCO(2 )(tcCO(2)) at baseline, with placebo, with medroxyprogesterone acetate (MPA 60 mg/d/14 days), and three and six weeks after cessation of MPA. RESULTS: Thirteen patients completed the trial. At baseline, the average ± SD of SaO(2 )mean was 90.6 ± 3.2 % and the median of SaO(2 )nadir 84.8 % (interquartile range, IQR 6.1). MPA improved them by 1.7 ± 1.6 %-units (95 % confidence interval (CI) 0.56, 2.8) and by 3.9 %-units (IQR 4.9; 95% CI 0.24, 10.2), respectively. The average of tcCO(2 )median was 6.0 ± 0.9 kPa and decreased with MPA by 0.9 ± 0.5 kPa (95% CI -1.3, -0.54). MPA improved SaO(2 )nadir and tcCO(2 )median also during REM sleep. Three weeks after cessation of MPA, the SaO(2 )mean remained 1.4 ± 1.8 %-units higher than at baseline, the difference being not significant (95% CI -0.03, 2.8). SaO(2 )nadir was 2.7 %-units (IQR 4.9; 95% CI 0.06, 18.7) higher than at baseline. Increases in SaO(2 )mean and SaO(2 )nadir during sleep with MPA were inversely associated with baseline SaO(2 )mean (r = -0.70, p = 0.032) and baseline SaO(2 )nadir (r = -0.77, p = 0.008), respectively. Treatment response in SaO(2 )mean, SaO(2 )nadir and tcCO(2 )levels did not associate with pack-years smoked, age, BMI, spirometric results or sleep variables. CONCLUSION: MPA-induced respiratory improvement in postmenopausal women seems to be consistent and prolonged. The improvement was greater in patients with lower baseline SaO(2 )values. Long-term studies in females are warranted

    Physiological and autonomic stress responses after prolonged sleep restriction and subsequent recovery sleep in healthy young men

    Get PDF
    Purpose Sleep restriction is increasingly common and associated with the development of health problems. We investigated how the neuroendocrine stress systems respond to prolonged sleep restriction and subsequent recovery sleep in healthy young men. Methods After two baseline (BL) nights of 8 h time in bed (TIB), TIB was restricted to 4 h per night for five nights (sleep restriction, SR, n = 15), followed by three recovery nights (REC) of 8 h TIB, representing a busy workweek and a recovery weekend. The control group (n = 8) had 8 h TIB throughout the experiment. A variety of autonomic cardiovascular parameters, together with salivary neuropeptide Y (NPY) and cortisol levels, were assessed. Results In the control group, none of the parameters changed. In the experimental group, heart rate increased from 60 +/- 1.8 beats per minute (bpm) at BL, to 63 +/- 1.1 bpm after SR and further to 65 +/- 1.8 bpm after REC. In addition, whole day low-frequency to-high frequency (LF/HF) power ratio of heart rate variability increased from 4.6 +/- 0.4 at BL to 6.0 +/- 0.6 after SR. Other parameters, including salivary NPY and cortisol levels, remained unaffected. Conclusions Increased heart rate and LF/HF power ratio are early signs of an increased sympathetic activity after prolonged sleep restriction. To reliably interpret the clinical significance of these early signs of physiological stress, a follow-up study would be needed to evaluate if the stress responses escalate and lead to more unfavourable reactions, such as elevated blood pressure and a subsequent elevated risk for cardiovascular health problems.Peer reviewe
    • …
    corecore