5,312 research outputs found
Preparation and structure characterization of soluble bone collagen peptide chelating calcium
In this study, G-25 gel chromatography, X-diffraction, scanning electron microscopy (SEM), UV and Fourier transform infrared spectroscopy (FTIR) were used to analyze soluble collagen peptides chelating calcium. Collagen peptide hydrolysis can be divided into four components using G-25 gel chromatography. Each component of calcium binding capacity was different and the components whose molecular weight was less than 5000 Da had a relatively high calcium binding capacity. In the infrared spectra experimental certification, after the collagen peptides had combined with calcium, amide I, II wave number was displaced, which indicated that amino nitrogen atoms and oxygen atoms on the carboxyl groups were involved in chelation. In the UV scan spectra, the characteristic absorption peak of the collagen peptide’s carbonyl and the peptide bond was clearly shifted, indicating that collagen peptides have reacted with calcium. In SEM spectra, a lot of white grains were seen to be "embedded" clearly in the surface of the collagen peptide, indicating that besides the reaction of coordination between collagen peptides and calcium, there was a certain degree of adsorption. After combination with calcium, the X-ray diffraction spectra showed that the no rules non-crystal structure collagen peptides turned into rules crystal structure. According to the structure analysis which showed that collagen peptide chelated calcium is a five-membered ring structure, calcium is in the center and was combined strongly with both the amino- and carboxyl-group.Key words: Bone, calcium binding, molecular weight, collagen peptide
Evaluating the performance of a distributed database of repetitive elements in complete genomes
[[abstract]]this paper is organized as follows. In section 2, we briefly describe RSDB. In section 3, we give the design of experiments. Section 4 shows the performance evaluation of the experiments designed in section 3. Finally, we draw a summary in section
Hepatocyte-specific activation of NF-κB does not aggravate chemical hepatocarcinogenesis in transgenic mice
The NF-κB signalling pathway plays important roles in liver organogenesis and cardnogenesis. Mouse embryos deficient in IKKβ die in mid-gestation, due to excessive apoptosis of hepatoblasts. Although activation of the NF-κB signalling pathway has been demonstrated in human hepatocellular carcinoma, the role of NF-κB is controversial. Here, we have generated transgenic mice in which a constitutively active form of IKKβ was expressed in a hepatocyte-specific manner. Using electrophoretic mobility shift assay, we documented increased NF-κB activities and up-regulated levels of NF-κB downstream target genes, Bcl-xL and STAT5, in the transgenic mouse livers. These results confirmed that the NF-κB pathway was activated in the livers of the transgenic mice. However, there was no significant difference in tumour formation between transgenic and wild-type mice up to an age of 50 weeks. When we treated the transgenic mice with the chemical carcinogen diethylnitrosamine (DEN), we observed no significant differences in the incidence and size of liver tumours formed in these mice with and without DEN treatment at 35 weeks of age, suggesting that the activated NF-κB pathway in the livers of the transgenic mice did not enhance hepatocarcinogenesis. Interestingly, some of the transient transgenic embryos (E12.5) had abnormal excessive accumulation of nucleated red blood cells in their developing livers. In summary, NF-κB activation in hepatocytes did not significantly affect chemical hepatocarcinogenesis. In addition, the TTR/IKKCA transgenic mice may serve as a useful model for studying the role of NF-κB activation in hepatocarcinogenesis as well as inflammatory and metabolic diseases. Copyright © 2008 Pathological Society of Great Britain and Ireland.postprin
Probing Local Variations of Superconductivity on the Surface of Ba(Fe1-xCox)2As2 Single Crystals
The spatially resolved electrical transport properties have been studied on
the surface of optimally-doped superconducting Ba(Fe1-xCox)2As2 single crystal
by using a four-probe scanning tunneling microscopy. While some non-uniform
contrast appears near the edge of the cleaved crystal, the scanning electron
microscopy (SEM) reveals mostly uniform contrast. For the regions that showed
uniform SEM contrast, a sharp superconducting transition at TC = 22.1 K has
been observed with a transition width (delta)Tc = 0.2 K. In the non-uniform
contrast region, TC is found to vary between 19.6 and 22.2 K with (delta)Tc
from 0.3 to 3.2 K. The wavelength dispersive x-ray spectroscopy reveals that Co
concentration remains 7.72% in the uniform region, but changes between 7.38%
and 7.62% in the non-uniform region. Thus the variations of superconductivity
are associated with local compositional change.Comment: 18 pages, 5 figure
Formalization of Transform Methods using HOL Light
Transform methods, like Laplace and Fourier, are frequently used for
analyzing the dynamical behaviour of engineering and physical systems, based on
their transfer function, and frequency response or the solutions of their
corresponding differential equations. In this paper, we present an ongoing
project, which focuses on the higher-order logic formalization of transform
methods using HOL Light theorem prover. In particular, we present the
motivation of the formalization, which is followed by the related work. Next,
we present the task completed so far while highlighting some of the challenges
faced during the formalization. Finally, we present a roadmap to achieve our
objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201
Hollow-core photonic bandgap fiber polarizer
Author name used in this publication: H. F. XuanAuthor name used in this publication: W. JinAuthor name used in this publication: J. JuAuthor name used in this publication: Y. P. Wang2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation
Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry2-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2-/- mutants despite the simultaneous inactivation of Per2. Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters
Primary liposarcoma of the ascending colon: a rare case of mixed type presenting as hemoperitoneum combined with other type of retroperitoneal liposarcoma
<p>Abstract</p> <p>Background</p> <p>Liposarcoma occurs most commonly in the extremities and retroperitoneum, however, it has been rarely observed in the colon.</p> <p>Case Presentation</p> <p>A case is reported a 41-year-old man with liposarcoma of ascending colon which was presented as hemoperitoneum and combined with a different histological type of retroperitoneal liposarcoma. He visited hospital with right lower abdominal pain and palpable mass. Laboratory data including tumor markers were within normal limits, and computed tomography revealed a 15 × 10 cm sized enhancing soft mass. Right hemicolectomy was performed, and after that, a further large retroperitoneal mass was revealed and this was also radically excised. Mixed-type colon liposarcoma and well differentiated type of retroperitoneal liposarcoma were diagnosed in pathologic report. The patient has remained free of disease for 24 months.</p> <p>Conclusions</p> <p>No standardized guidelines have been established for its treatment because too small a number of cases have been reported, but surgical resection was considered the treatment of choice.</p
Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.
In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification
Out-of-equilibrium physics in driven dissipative coupled resonator arrays
Coupled resonator arrays have been shown to exhibit interesting many- body
physics including Mott and Fractional Hall states of photons. One of the main
differences between these photonic quantum simulators and their cold atoms
coun- terparts is in the dissipative nature of their photonic excitations. The
natural equi- librium state is where there are no photons left in the cavity.
Pumping the system with external drives is therefore necessary to compensate
for the losses and realise non-trivial states. The external driving here can
easily be tuned to be incoherent, coherent or fully quantum, opening the road
for exploration of many body regimes beyond the reach of other approaches. In
this chapter, we review some of the physics arising in driven dissipative
coupled resonator arrays including photon fermionisa- tion, crystallisation, as
well as photonic quantum Hall physics out of equilibrium. We start by briefly
describing possible experimental candidates to realise coupled resonator arrays
along with the two theoretical models that capture their physics, the
Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the
analytical and sophisticated numerical methods required to tackle these systems
is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and
Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by
D.G.Angelakis, Quantum Science and Technology Series, Springer 201
- …