1,278 research outputs found

    Rapamycin but not FK506 inhibits the proliferation of mononuclear phagocytes induced by colony-stimulating factors

    Get PDF
    FK506, CsA, and rapamycin are potent inhibitors of T lymphocyte activation; relatively little is known of their effects on cells of the monocyte/macrophage lineage. Studies were undertaken to determine the effects of these drugs on the proliferative response of bone marrow-derived mononuclear phagocytes (BMMP) to CSFs. Rapamycin inhibited the proliferation of BMMP cultured in the presence of 10% L cellconditioned medium, used as a source of macrophage CSF. The inhibition by rapamycin was dose dependent and apparent at concentrations of 0.1 nM or greater. In a similar fashion, rapamycin inhibited the proliferation of BMMP stimulated by the recombinant forms of murine IL-3 and murine granulocyte-macrophage CSF, and human macrophage CSF. In contrast, neither FK506 nor CsA at concentrations as high as 1000 nM diminished the proliferation of BMMP cultured under identical conditions. FK506, but not CsA, blocked the inhibitory effects of rapamycin on the response of BMMP to CSFs. In summary, these data indicate that rapamycin inhibits the proliferation of BMMP in response to CSFs. These results imply that patients receiving rapamycin, but not FK506 or CsA, may have an impaired ability to generate a functional mononuclear phagocyte population. © 1994 by Williams and Wilkins

    Gauss-Bonnet Black Holes and Heavy Fermion Metals

    Full text link
    We consider charged black holes in Einstein-Gauss-Bonnet Gravity with Lifshitz boundary conditions. We find that this class of models can reproduce the anomalous specific heat of condensed matter systems exhibiting non-Fermi-liquid behaviour at low temperatures. We find that the temperature dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet coupling parameter for a given value of the Lifshitz scaling parameter. We propose that this class of models is dual to a class of models of non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this versio

    Pathologies in Asymptotically Lifshitz Spacetimes

    Full text link
    There has been significant interest in the last several years in studying possible gravitational duals, known as Lifshitz spacetimes, to anisotropically scaling field theories by adding matter to distort the asymptotics of an AdS spacetime. We point out that putative ground state for the most heavily studied example of such a spacetime, that with a flat spatial section, suffers from a naked singularity and further point out this singularity is not resolvable by any known stringy effect. We review the reasons one might worry that asymptotically Lifshitz spacetimes are unstable and employ the initial data problem to study the stability of such systems. Rather surprisingly this question, and even the initial value problem itself, for these spacetimes turns out to generically not be well-posed. A generic normalizable state will evolve in such a way to violate Lifshitz asymptotics in finite time. Conversely, enforcing the desired asymptotics at all times puts strong restrictions not just on the metric and fields in the asymptotic region but in the deep interior as well. Generically, even perturbations of the matter field of compact support are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including relationship to Gubser's conjecture and singularity in RG flow solution, plus minor clarification

    Lifshitz black holes in string theory

    Full text link
    We provide the first black hole solutions with Lifshitz asymptotics found in string theory. These are expected to be dual to models enjoying anisotropic scale invariance with dynamical exponent z=2 at finite temperature. We employ a consistent truncation of type IIB supergravity to four dimensions with an arbitrary 5-dimensional Einstein manifold times a circle as internal geometry. New interesting features are found that significantly differ from previous results in phenomenological models. In particular, small black holes are shown to be thermodynamically unstable, analogously to the usual AdS-Schwarzschild black holes, and extremality is never reached. This signals a possible Hawking-Page like phase transition at low temperatures.Comment: 19 pages, 7 figures. v2 references adde

    Peripheral arterial disease: A high risk – but neglected – disease population

    Get PDF
    Peripheral arterial disease (PAD) is a common, progressive manifestation of atherothrombotic vascular disease, which should be managed no different to cardiac disease. Indeed, there is growing evidence that PAD patients are a high risk group, although still relatively under-detected and under treated. This is despite the fact that PAD patients are an increased mortality rate comparable to those with pre-existing or established cardiovascular disease [myocardial infarction, stroke]. With a holistic approach to atherothrombotic vascular disease, our management of PAD can only get better

    Attenuation of Zinc Finger Nuclease Toxicity by Small-Molecule Regulation of Protein Levels

    Get PDF
    Zinc finger nucleases (ZFNs) have been used successfully to create genome-specific double-strand breaks and thereby stimulate gene targeting by several thousand fold. ZFNs are chimeric proteins composed of a specific DNA-binding domain linked to a non-specific DNA-cleavage domain. By changing key residues in the recognition helix of the specific DNA-binding domain, one can alter the ZFN binding specificity and thereby change the sequence to which a ZFN pair is being targeted. For these and other reasons, ZFNs are being pursued as reagents for genome modification, including use in gene therapy. In order for ZFNs to reach their full potential, it is important to attenuate the cytotoxic effects currently associated with many ZFNs. Here, we evaluate two potential strategies for reducing toxicity by regulating protein levels. Both strategies involve creating ZFNs with shortened half-lives and then regulating protein level with small molecules. First, we destabilize ZFNs by linking a ubiquitin moiety to the N-terminus and regulate ZFN levels using a proteasome inhibitor. Second, we destabilize ZFNs by linking a modified destabilizing FKBP12 domain to the N-terminus and regulate ZFN levels by using a small molecule that blocks the destabilization effect of the N-terminal domain. We show that by regulating protein levels, we can maintain high rates of ZFN-mediated gene targeting while reducing ZFN toxicity

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Recursive construction of perfect DNA molecules from imperfect oligonucleotides

    Get PDF
    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
    • 

    corecore