98 research outputs found

    Clinicopathological factors influencing outcome in metastatic colorectal cancer patients treated with fluoropyrimidine and bevacizumab maintenance treatment vs observation: an individual patient data meta-analysis of two phase 3 trials

    Get PDF
    BACKGROUND: The CAIRO3 and AIO 0207 trials demonstrated the efficacy of fluoropyrimidine plus bevacizumab (FP+Bev) maintenance treatment in metastatic colorectal cancer (mCRC) patients. In this individual patient data meta-analysis with updated follow-up, we aim to provide more precise estimates of treatment effects and to identify subgroups that benefit most from maintenance treatment or observation. METHODS: In 871 patients, randomised to FP+Bev maintenance treatment or observation, we investigated whether treatment effect was modified by sex, age, performance status, response to induction treatment, primary tumour location, number of metastatic sites, disease stage and primary tumour resection, serum LDH, platelet count, CEA, and RAS/BRAF mutation status. Primary end point was time to second progression after reintroduction of the induction regimen (PFS2). Secondary end points were first progression-free survival (PFS1) and overall survival (OS). RESULTS: At a median follow-up of 68.5 months (IQR 54.6-87.0 months), maintenance treatment was more effective compared with observation in PFS1 (HR 0.40(95% CI 0.34-0.47)) and PFS2 (HR 0.70(0.60-0.81)). No subgroups were identified that did not benefit from maintenance treatment in PFS1 and PFS2; no clinically relevant subgroup effects were observed. Regarding OS, pooled results were not significant (HR 0.91(0.78-1.05)), and the trials showed marked heterogeneity in overall treatment effect and subgroup effects. CONCLUSIONS: FP+Bev maintenance treatment is effective in all patients, regardless of the investigated subgroups.info:eu-repo/semantics/publishedVersio

    Buffered aspirin: what is your gut feeling?

    Get PDF

    Light-Induced Energetic Decoupling as a Mechanism for Phycobilisome-Related Energy Dissipation in Red Algae: A Single Molecule Study

    Get PDF
    BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes) as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE) and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed

    High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays

    Get PDF
    Background: Inactivation of the p53 pathway that controls cell cycle progression, apoptosis and senescence, has been proposed to occur in virtually all human tumors and p53 is the protein most frequently mutated in human cancer. However, the mutational status of p53 in melanoma is still controversial; to clarify this notion we analysed the largest series of melanoma samples reported to date. Methodology/Principal Findings: Immunohistochemical analysis of more than 180 melanoma specimens demonstrated that high levels of p53 are expressed in the vast majority of cases. Subsequent sequencing of the p53 exons 5–8, however, revealed only in one case the presence of a mutation. Nevertheless, by means of two different p53 reporter constructs we demonstrate transcriptional inactivity of wild type p53 in 6 out of 10 melanoma cell lines; the 4 other p53 wild type melanoma cell lines exhibit p53 reporter gene activity, which can be blocked by shRNA knock down of p53. Conclusions/Significance: In melanomas expressing high levels of wild type p53 this tumor suppressor is frequently inactivated at transcriptional level

    M6P/IGF2R loss of heterozygosity in head and neck cancer associated with poor patient prognosis

    Get PDF
    BACKGROUND: The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) encodes for a multifunctional receptor involved in lysosomal enzyme trafficking, fetal organogenesis, cytotoxic T cell-induced apoptosis and tumor suppression. The purpose of this investigation was to determine if the M6P/IGF2R tumor suppressor gene is mutated in human head and neck cancer, and if allelic loss is associated with poor patient prognosis. METHODS: M6P/IGF2R loss of heterozygosity in locally advanced squamous cell carcinoma of the head and neck was assessed with six different gene-specific nucleotide polymorphisms. The patients studied were enrolled in a phase 3 trial of twice daily radiotherapy with or without concurrent chemotherapy; median follow-up for surviving patients is 76 months. RESULTS: M6P/IGF2R was polymorphic in 64% (56/87) of patients, and 54% (30/56) of the tumors in these informative patients had loss of heterozygosity. M6P/IGF2R loss of heterozygosity was associated with a significantly reduced 5 year relapse-free survival (23% vs. 69%, p = 0.02), locoregional control (34% vs. 75%, p = 0.03) and cause specific survival (29% vs. 75%, p = 0.02) in the patients treated with radiotherapy alone. Concomitant chemotherapy resulted in a better outcome when compared to radiotherapy alone only in those patients whose tumors had M6P/IGF2R loss of heterozygosity. CONCLUSIONS: This study provides the first evidence that M6P/IGF2R loss of heterozygosity predicts for poor therapeutic outcome in patients treated with radiotherapy alone. Our findings also indicate that head and neck cancer patients with M6P/IGF2R allelic loss benefit most from concurrent chemotherapy
    • …
    corecore