10 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Alkaliphiles : The Emerging Biological Tools Enhancing Concrete Durability

    No full text
    Concrete is one of the most commonly used building materials ever used. Despite it is a very important and common construction material, concrete is very sensitive to crack formation and requires repair. A variety of chemical-based techniques and materials have been developed to repair concrete cracks. Although the use of these chemical-based repair systems are the best commercially available choices, there have also been concerns related to their use. These repair agents suffer from inefficiency and unsustainability. Most of the products are expensive and susceptible to degradation, exhibit poor bonding to the cracked concrete surfaces, and are characterized by different physical properties such as thermal expansion coefficients which are different to that of concrete. Moreover, many of these repair agents contain chemicals that pose environmental and health hazards. Thus, there has been interest in developing concrete crack repair agents that are efficient, long lasting, safe, and benign to the environment and exhibit physical properties which resemble that of the concrete. The search initiated by these desires brought the use of biomineralization processes as tools in mending concrete cracks. Among biomineralization processes, microbially initiated calcite precipitation has emerged as an interesting alternative to the existing chemical-based concrete crack repairing system. Indeed, results of several studies on the use of microbial-based concrete repair agents revealed the remarkable potential of this approach in the fight against concrete deterioration. In addition to repairing existing concrete cracks, microorganisms have also been considered to make protective surface coating (biodeposition) on concrete structures and in making self-healing concrete. Even though a wide variety of microorganisms can precipitate calcite, the nature of concrete determines their applicability. One of the important factors that determine the applicability of microbes in concrete is pH. Concrete is highly alkaline in nature, and hence the microbes envisioned for this application are alkaliphilic or alkali-tolerant. This work reviews the available information on applications of microbes in concrete: repairing existing cracks, biodeposition, and self-healing. Moreover, an effort is made to discuss biomineralization processes that are relevant to extend the durability of concrete structures

    Preoperative nasopharyngeal swab testing and postoperative pulmonary complications in patients undergoing elective surgery during the SARS-CoV-2 pandemic.

    Get PDF
    BACKGROUND: Surgical services are preparing to scale up in areas affected by COVID-19. This study aimed to evaluate the association between preoperative SARS-CoV-2 testing and postoperative pulmonary complications in patients undergoing elective cancer surgery. METHODS: This international cohort study included adult patients undergoing elective surgery for cancer in areas affected by SARS-CoV-2 up to 19 April 2020. Patients suspected of SARS-CoV-2 infection before operation were excluded. The primary outcome measure was postoperative pulmonary complications at 30 days after surgery. Preoperative testing strategies were adjusted for confounding using mixed-effects models. RESULTS: Of 8784 patients (432 hospitals, 53 countries), 2303 patients (26.2 per cent) underwent preoperative testing: 1458 (16.6 per cent) had a swab test, 521 (5.9 per cent) CT only, and 324 (3.7 per cent) swab and CT. Pulmonary complications occurred in 3.9 per cent, whereas SARS-CoV-2 infection was confirmed in 2.6 per cent. After risk adjustment, having at least one negative preoperative nasopharyngeal swab test (adjusted odds ratio 0.68, 95 per cent confidence interval 0.68 to 0.98; P = 0.040) was associated with a lower rate of pulmonary complications. Swab testing was beneficial before major surgery and in areas with a high 14-day SARS-CoV-2 case notification rate, but not before minor surgery or in low-risk areas. To prevent one pulmonary complication, the number needed to swab test before major or minor surgery was 18 and 48 respectively in high-risk areas, and 73 and 387 in low-risk areas. CONCLUSION: Preoperative nasopharyngeal swab testing was beneficial before major surgery and in high SARS-CoV-2 risk areas. There was no proven benefit of swab testing before minor surgery in low-risk areas
    corecore