2,813 research outputs found
Compact High-Velocity Clouds at High Resolution
Six examples of the compact, isolated high-velocity clouds catalogued by
Braun & Burton (1999) and identified with a dynamically cold ensemble of
primitive objects falling towards the barycenter of the Local Group have been
imaged with the Westerbork Synthesis Radio Telescope; an additional ten have
been imaged with the Arecibo telescope. The imaging reveals a characteristic
core/halo morphology: one or several cores of cool, relatively
high-column-density material, are embedded in an extended halo of warmer,
lower-density material. Several of the cores show kinematic gradients
consistent with rotation; these CHVCs are evidently rotationally supported and
dark-matter dominated. The imaging data allows several independent estimates of
the distances to these objects, which lie in the range 0.3 to 1.0 Mpc. The CHVC
properties resemble what might be expected from very dark dwarf irregular
galaxies.Comment: 12 pages, 7 figures, to appear in "The Chemical Evolution of the
Milky Way: Stars versus Clusters", eds. F. Matteuchi and F. Giovannelli,
Kluwer Academic Publisher
VVV-WIT-04: An extragalactic variable source caught by the VVV Survey
We report the discovery of VVV-WIT-04, a near-infrared variable source
towards the Galactic disk located ~0.2 arcsec apart from the position of the
radio source PMN J1515-5559. The object was found serendipitously in the
near-IR data of the ESO public survey VISTA Variables in the V\'ia L\'actea
(VVV). Our analysis is based on variability, multicolor, and proper motion data
from VVV and VVV eXtended surveys, complemented with archive data at longer
wavelengths. We suggest that VVV-WIT-04 has an extragalactic origin as the
near-IR counterpart of PMN J1515-5559. The Ks-band light-curve of VVV-WIT-04 is
highly variable and consistent with that of an Optically Violent Variable (OVV)
quasar. The variability in the near-IR can be interpreted as the redshifted
optical variability. Residuals to the proper motion varies with the magnitude
suggesting contamination by a blended source. Alternative scenarios, including
a transient event such as a nova or supernova, or even a binary microlensing
event are not in agreement with the available data.R.K.S. acknowledges support from CNPq/Brazil through
projects 308968/2016-6 and 421687/2016-9. P.W.L. is supported by STFC Consolidated Grant ST/R000905/1. Support for the authors is provided by the BASAL CONICYT Center for Astrophysics and Associated Technologies
(CATA) through grant AFB-170002, and the Ministry for
the Economy, Development, and Tourism, Programa Iniciativa CientŽıfica Milenio through grant IC120009, awarded to
the Millennium Institute of Astrophysics (MAS). D.M. acknowledges support from FONDECYT through project Regular #1170121
Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus
BACKGROUND: Diabetic nephropathy is a serious complication of diabetes mellitus and is associated with considerable morbidity and high mortality. There is increasing evidence to suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We assessed whether epigenetic modification of DNA methylation is associated with diabetic nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus (T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal disease. METHODS: We performed DNA methylation profiling in bisulphite converted DNA from cases and controls using the recently developed Illumina Infinium(R) HumanMethylation27 BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14,495 genes. RESULTS: Singular Value Decomposition (SVD) analysis indicated that significant components of DNA methylation variation correlated with patient age, time to onset of diabetic nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that demonstrated correlations with time to development of diabetic nephropathy. Of note, this included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a gene in which the first intronic SNP rs13293564 has recently been reported to be associated with diabetic nephropathy. CONCLUSION: This high throughput platform was able to successfully interrogate the methylation state of individual cytosines and identified 19 prospective CpG sites associated with risk of diabetic nephropathy. These differences in DNA methylation are worthy of further follow-up in replication studies using larger cohorts of diabetic patients with and without nephropathy
Cosmology with a SKA HI intensity mapping survey
HI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum -- thus determining the expansion and growth history of the Universe -- these surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal
A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy
Dwarf satellite galaxies are thought to be the remnants of the population of
primordial structures that coalesced to form giant galaxies like the Milky Way.
An early analysis noted that dwarf galaxies may not be isotropically
distributed around our Galaxy, as several are correlated with streams of HI
emission, and possibly form co-planar groups. These suspicions are supported by
recent analyses, and it has been claimed that the apparently planar
distribution of satellites is not predicted within standard cosmology, and
cannot simply represent a memory of past coherent accretion. However, other
studies dispute this conclusion. Here we report the existence (99.998%
significance) of a planar sub-group of satellites in the Andromeda galaxy,
comprising approximately 50% of the population. The structure is vast: at least
400 kpc in diameter, but also extremely thin, with a perpendicular scatter
<14.1 kpc (99% confidence). Radial velocity measurements reveal that the
satellites in this structure have the same sense of rotation about their host.
This finding shows conclusively that substantial numbers of dwarf satellite
galaxies share the same dynamical orbital properties and direction of angular
momentum, a new insight for our understanding of the origin of these most dark
matter dominated of galaxies. Intriguingly, the plane we identify is
approximately aligned with the pole of the Milky Way's disk and is co-planar
with the Milky Way to Andromeda position vector. The existence of such
extensive coherent kinematic structures within the halos of massive galaxies is
a fact that must be explained within the framework of galaxy formation and
cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1
three-dimensional interactive figure. To view and manipulate the 3-D figure,
an Adobe Reader browser plug-in is required; alternatively save to disk and
view with Adobe Reade
Ram pressure feeding super-massive black holes
When supermassive black holes at the center of galaxies accrete matter
(usually gas), they give rise to highly energetic phenomena named Active
Galactic Nuclei (AGN). A number of physical processes have been proposed to
account for the funneling of gas towards the galaxy centers to feed the AGN.
There are also several physical processes that can strip gas from a galaxy, and
one of them is ram pressure stripping in galaxy clusters due to the hot and
dense gas filling the space between galaxies. We report the discovery of a
strong connection between severe ram pressure stripping and the presence of AGN
activity. Searching in galaxy clusters at low redshift, we have selected the
most extreme examples of jellyfish galaxies, which are galaxies with long
tentacles of material extending for dozens of kpc beyond the galaxy disk. Using
the MUSE spectrograph on the ESO Very Large Telescope, we find that 6 out of
the 7 galaxies of this sample host a central AGN, and two of them also have
galactic-scale AGN ionization cones. The high incidence of AGN among the most
striking jellyfishes may be due to ram pressure causing gas to flow towards the
center and triggering the AGN activity, or to an enhancement of the stripping
caused by AGN energy injection, or both. Our analysis of the galaxy position
and velocity relative to the cluster strongly supports the first hypothesis,
and puts forward ram pressure as another, yet unforeseen, possible mechanism
for feeding the central supermassive black hole with gas.Comment: published in Nature, Vol.548, Number 7667, pag.30
The most variable VVV sources: eruptive protostars, dipping giants in the nuclear disc and others
We have performed a comprehensive search of a VISTA Variables in the Via Lactea (VVV) data base of 9.5 yr light curves for variable sources with ÎKs â„ 4 mag, aiming to provide a large sample of high amplitude eruptive young stellar objects (YSOs) and detect unusual or new types of infrared variable source. We find 222 variable or transient sources in the Galactic bulge and disc, most of which are new discoveries. The sample mainly comprises novae, YSOs, microlensing events, Long Period Variable stars (LPVs), and a few rare or unclassified sources. Additionally, we report the discovery of a significant population of aperiodic late-type giant stars suffering deep extinction events, strongly clustered in the Nuclear Disc of the Milky Way. We suggest that these are metal-rich stars in which radiatively driven mass loss has been enhanced by super-solar metallicity. Among the YSOs, 32/40 appear to be undergoing episodic accretion. Long-lasting YSO eruptions have a typical rise time of âŒ2 yr, somewhat slower than the 6â12 month time-scale seen in the few historical events observed on the rise. The outburst durations are usually at least 5 yr, somewhat longer than many lower amplitude VVV events detected previously. The light curves are diverse in nature, suggesting that multiple types of disc instability may occur. Eight long-duration extinction events are seen wherein the YSO dims for a year or more, attributable to inner disc structure. One binary YSO in NGC 6530 displays periodic extinction events (P=59 d) similar to KH 15D
Sexual Size Dimorphism and Body Condition in the Australasian Gannet
Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD
The remnants of galaxy formation from a panoramic survey of the region around M31
In hierarchical cosmological models, galaxies grow in mass through the
continual accretion of smaller ones. The tidal disruption of these systems is
expected to result in loosely bound stars surrounding the galaxy, at distances
that reach times the radius of the central disk. The number,
luminosity and morphology of the relics of this process provide significant
clues to galaxy formation history, but obtaining a comprehensive survey of
these components is difficult because of their intrinsic faintness and vast
extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We
detect stars and coherent structures that are almost certainly remnants of
dwarf galaxies destroyed by the tidal field of M31. An improved census of their
surviving counterparts implies that three-quarters of M31's satellites brighter
than await discovery. The brightest companion, Triangulum (M33), is
surrounded by a stellar structure that provides persuasive evidence for a
recent encounter with M31. This panorama of galaxy structure directly confirms
the basic tenets of the hierarchical galaxy formation model and reveals the
shared history of M31 and M33 in the unceasing build-up of galaxies.Comment: Published in Nature. Supplementary movie available at
https://www.astrosci.ca/users/alan/PANDAS/Latest%20news%3A%20movie%20of%20orbit.htm
- âŠ