449 research outputs found

    Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Regulation of microRNA biogenesis and turnover by animals and their viruses

    Get PDF
    Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes

    Determining Vitamin D Status: A Comparison between Commercially Available Assays

    Get PDF
    Background: Vitamin D is not only important for bone health but can also affect the development of several non-bone diseases. The definition of vitamin D insufficiency by serum levels of 25-hydroxyvitamin D depends on the clinical outcome but might also be a consequence of analytical methods used for the definition. Although numerous 25-hydroxyvitamin D assays are available, their comparability is uncertain. We therefore aim to investigate the precision, accuracy and clinical consequences of differences in performance between three common commercially available assays. Methodology/Principal Findings: Serum 25-hydroxyvitamin D levels from 204 twins from the Swedish Twin Registry were determined with high-pressure liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLCAPCI-MS), a radioimmunoassay (RIA) and a chemiluminescent immunoassay (CLIA). High inter-assay disagreement was found. Mean 25-hydroxyvitamin D levels were highest for the HPLC-APCI-MS technique (85 nmol/L, 95% CI 81-89), intermediate for RIA (70 nmol/L, 95% CI 66-74) and lowest with CLIA (60 nmol/L, 95% CI 56-64). Using a 50-nmol/L cut-off, 8% of the subjects were insufficient using HPLC-APCI-MS, 22% with RIA and 43% by CLIA. Because of the heritable component of 25-hydroxyvitamin D status, the accuracy of each method could indirectly be assessed by comparison of within-twin pair correlations. The strongest correlation was found for HPLC-APCI-MS (r = 0.7), intermediate for RIA (r = 0.5) and lowest for CLIA (r = 0.4). Regression analyses between the methods revealed a non-uniform variance (p<0.0001) depending on level of 25-hydroxyvitamin D. Conclusions/Significance: There are substantial inter-assay differences in performance. The most valid method was HPLCAPCI-MS. Calibration between 25-hydroxyvitamin D assays is intricate

    Pre-Diagnostic Plasma 25-Hydroxyvitamin D Levels and Risk of Non-Melanoma Skin Cancer in Women

    Get PDF
    Recent reports have shown that vitamin D status was inversely associated with the risk of various cancers. However, few studies examined the association between vitamin D levels and risk of skin cancer.We prospectively evaluated the association between baseline plasma 25(OH)D levels and the risk of incident squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) among 4,641 women from the Nurses' Health Study (NHS) and the NHS II with 510 incident BCC cases and 75 incident SCC cases. We used multivariate logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CIs).Plasma 25(OH)D levels were positively associated with risk of BCC after adjusting for age at blood draw, season of blood draw, lab batch, hair color, burning tendency, the number of sunburns, and ultra-violet B flux of residence at blood collection. Women in the highest quartile of 25(OH)D had more than 2-fold increased risk of BCC compared with women in the lowest quartile (OR = 2.07, 95% CI = 1.52-2.80, P for trend <0.0001). We also found a significantly positive association between plasma 25(OH)D levels and SCC risk after adjusting for the same covariates (OR, highest vs. lowest quartile = 3.77, 95% CI = 1.70-8.36, P for trend= 0.0002).In this prospective study of women, plasma vitamin D levels were positively associated with non-melanoma skin cancer risk. Considering that most circulating vitamin D is due to sun exposure, the positive association between plasma vitamin D and non-melanoma skin cancer is confounded by sun exposure. Our data suggest that one-time measurement of plasma vitamin D levels may reasonably reflect long-term sun exposure and predict the risk of non-melanoma skin cancer

    Associations of Serum 25-Hydroxyvitamin D, Parathyroid Hormone and Calcium with Cardiovascular Risk Factors: Analysis of 3 NHANES Cycles (2001–2006)

    Get PDF
    Increasing evidence suggests a role for mineral metabolism in cardiovascular disease risk. 25-hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH), and calcium may be directly associated with cardiovascular risk factors or mediated by each other.We combined data for adult participants in three cycles of the National Health and Nutrition Examination Survey (2001-2, 2003-4, 2005-6), a representative sample of the civilian, non-institutionalized US population (N = 3,958). Using this data we examined joint associations of 25(OH)D, PTH and calcium with a range of cardiovascular risk factors. 25(OH)D was inversely associated with fasting insulin (mean difference in insulin per 1 standard deviation 25(OH)D: -0.053 (95%CI: -0.091, -0.015)), glucose (-0.046 95%CI: -0.081, -0.012) and systolic blood pressure (SBP) (-0.032 95%CI: -0.062, -0.001), and positively associated with high density lipoprotein cholesterol HDL-c (0.088 95%CI: 0.044, 0.148), after adjustment for ethnicity, smoking, socio-economic status and waist circumference. PTH was positively associated with diastolic blood pressure (0.110, 95%CI: 0.055, 0.164) in confounder adjusted models, but was not associated with other cardiovascular risk factors. Albumin adjusted calcium was associated with triglycerides (0.102 95%CI: 0.063, 0.141), postload glucose (0.078, 95%CI: 0.025, 0.130), fasting insulin (0.074, 95%CI: 0.044, 0.104), HbA1c (0.070, 95%CI: 0.036, 0.105), SBP (0.064, 95%CI: 0.028, 0.100), fasting glucose (0.055, 95%CI: 0.018, 0.092) and low density lipoprotein cholesterol (0.052, 95%CI: 0.014, 0.091). With mutual adjustment for each other, these associations remained essentially unchanged.Lower levels of 25(OH)D and higher levels of calcium and PTH appear to be associated with different cardiovascular risk factors and may therefore affect cardiovascular disease risk through different mechanisms

    Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma

    Get PDF
    Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain
    corecore