134 research outputs found

    Tiny cystine stones in the gallbladder of a patient with cholecystolithiasis complicating acute cholecystitis: a case report

    Get PDF
    Cystine stones, the main component of which is cystine, are very common urinary calculi, but are rare in the gall bladder. In animals, there has been only one report of cystine gallstones in tree shrews, and to our knowledge, this is the first report of cystine gallstones in humans

    The Drosophila Anion Exchanger (DAE) lacks a detectable interaction with the spectrin cytoskeleton

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1) was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE) as a marker for studies of the downstream effects of spectrin cytoskeleton mutations.</p> <p>Results</p> <p>Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in <it>Drosophila </it>S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in <it>Drosophila</it>.</p> <p>Conclusions</p> <p>Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in <it>Drosophila</it>. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in <it>Drosophila</it>.</p

    The Surgical Infection Society revised guidelines on the management of intra-abdominal infection

    Get PDF
    Background: Previous evidence-based guidelines on the management of intra-abdominal infection (IAI) were published by the Surgical Infection Society (SIS) in 1992, 2002, and 2010. At the time the most recent guideline was released, the plan was to update the guideline every five years to ensure the timeliness and appropriateness of the recommendations. Methods: Based on the previous guidelines, the task force outlined a number of topics related to the treatment of patients with IAI and then developed key questions on these various topics. All questions were approached using general and specific literature searches, focusing on articles and other information published since 2008. These publications and additional materials published before 2008 were reviewed by the task force as a whole or by individual subgroups as to relevance to individual questions. Recommendations were developed by a process of iterative consensus, with all task force members voting to accept or reject each recommendation. Grading was based on the GRADE (Grades of Recommendation Assessment, Development, and Evaluation) system; the quality of the evidence was graded as high, moderate, or weak, and the strength of the recommendation was graded as strong or weak. Review of the document was performed by members of the SIS who were not on the task force. After responses were made to all critiques, the document was approved as an official guideline of the SIS by the Executive Council. Results: This guideline summarizes the current recommendations developed by the task force on the treatment of patients who have IAI. Evidence-based recommendations have been made regarding risk assessment in individual patients; source control; the timing, selection, and duration of antimicrobial therapy; and suggested approaches to patients who fail initial therapy. Additional recommendations related to the treatment of pediatric patients with IAI have been included. Summary: The current recommendations of the SIS regarding the treatment of patients with IAI are provided in this guideline

    Exploiting Nucleotide Composition to Engineer Promoters

    Get PDF
    The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue- and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a “proof-of-concept” for custom-designing promoters that are suitable for biotechnological and medical applications

    Aromatase expression is increased in BRCA1 mutation carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of <it>BRCA1 </it>gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression <it>in vitro</it>. Our objective was to characterise aromatase gene <it>(CYP19A1) </it>and its promoter expression in breast adipose and ovarian tissue in <it>BRCA1 </it>mutation carriers and unaffected controls.</p> <p>Methods</p> <p>We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women.</p> <p>Results</p> <p>We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of <it>BRCA1 </it>mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts.</p> <p>Conclusion</p> <p>Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in <it>BRCA1 </it>mutation carriers.</p

    Fenoldopam use in a burn intensive care unit: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fenoldopam mesylate is a highly selective dopamine-1 receptor agonist approved for the treatment of hypertensive emergencies that may have a role at low doses in preserving renal function in those at high risk for or with acute kidney injury (AKI). There is no data on low-dose fenoldopam in the burn population. The purpose of our study was to describe our use of low-dose fenoldopam (0.03-0.09 μg/kg/min) infusion in critically ill burn patients with AKI.</p> <p>Methods</p> <p>We performed a retrospective analysis of consecutive patients admitted to our burn intensive care unit (BICU) with severe burns from November 2005 through September 2008 who received low-dose fenoldopam. Data obtained included systolic blood pressure, serum creatinine, vasoactive medication use, urine output, and intravenous fluid. Patients on concomitant continuous renal replacement therapy were excluded. Modified inotrope score and vasopressor dependency index were calculated. One-way analysis of variance with repeated measures, Wilcoxson signed rank, and chi-square tests were used. Differences were deemed significant at p < 0.05.</p> <p>Results</p> <p>Seventy-seven patients were treated with low-dose fenoldopam out of 758 BICU admissions (10%). Twenty (26%) were AKI network (AKIN) stage 1, 14 (18%) were AKIN stage 2, 42 (55%) were AKIN stage 3, and 1 (1%) was AKIN stage 0. Serum creatinine improved over the first 24 hours and continued to improve through 48 hours (<it>p </it>< 0.05). There was an increase in systolic blood pressure in the first 24 hours that was sustained through 48 hours after initiation of fenoldopam (<it>p </it>< 0.05). Urine output increased after initiation of fenoldopam without an increase in intravenous fluid requirement (<it>p </it>< 0.05; <it>p </it>= NS). Modified inotrope score and vasopressor dependency index both decreased over 48 hours (<it>p </it>< 0.0001; <it>p </it>= 0.0012).</p> <p>Conclusions</p> <p>These findings suggest that renal function was preserved and that urine output improved without a decrease in systolic blood pressure, increase in vasoactive medication use, or an increase in resuscitation requirement in patients treated with low-dose fenoldopam. A randomized controlled trial is required to establish the efficacy of low-dose fenoldopam in critically ill burn patients with AKI.</p

    Copy Number Variation of CCL3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques (Macaca mulatta)

    Get PDF
    Variation in genes underlying host immunity can lead to marked differences in susceptibility to HIV infection among humans. Despite heavy reliance on non-human primates as models for HIV/AIDS, little is known about which host factors are shared and which are unique to a given primate lineage. Here, we investigate whether copy number variation (CNV) at CCL3-like genes (CCL3L), a key genetic host factor for HIV/AIDS susceptibility and cell-mediated immune response in humans, is also a determinant of time until onset of simian-AIDS in rhesus macaques. Using a retrospective study of 57 rhesus macaques experimentally infected with SIVmac, we find that CCL3L CNV explains approximately 18% of the variance in time to simian-AIDS (p<0.001) with lower CCL3L copy number associating with more rapid disease course. We also find that CCL3L copy number varies significantly (p<10−6) among rhesus subpopulations, with Indian-origin macaques having, on average, half as many CCL3L gene copies as Chinese-origin macaques. Lastly, we confirm that CCL3L shows variable copy number in humans and chimpanzees and report on CCL3L CNV within and among three additional primate species. On the basis of our findings we suggest that (1) the difference in population level copy number may explain previously reported observations of longer post-infection survivorship of Chinese-origin rhesus macaques, (2) stratification by CCL3L copy number in rhesus SIV vaccine trials will increase power and reduce noise due to non-vaccine-related differences in survival, and (3) CCL3L CNV is an ancestral component of the primate immune response and, therefore, copy number variation has not been driven by HIV or SIV per se

    Genetic Ablation of Bcl-x Attenuates Invasiveness without Affecting Apoptosis or Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Cancer

    Get PDF
    Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-xL, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic β-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-xL upon exogenous over-expression

    Activation of 2′ 5′-oligoadenylate synthetase by stem loops at the 5′-end of the West Nile virus genome

    Get PDF
    West Nile virus (WNV) has a positive sense RNA genome with conserved structural elements in the 5′ and 3′ -untranslated regions required for polyprotein production. Antiviral immunity to WNV is partially mediated through the production of a cluster of proteins known as the interferon stimulated genes (ISGs). The 2′ 5′-oligoadenylate synthetases (OAS) are key ISGs that help to amplify the innate immune response. Upon interaction with viral double stranded RNA, OAS enzymes become activated and enable the host cell to restrict viral propagation. Studies have linked mutations in the OAS1 gene to increased susceptibility to WNV infection, highlighting the importance of OAS1 enzyme. Here we report that the region at the 5′-end of the WNV genome comprising both the 5′-UTR and initial coding region is capable of OAS1 activation in vitro. This region contains three RNA stem loops (SLI, SLII, and SLIII) whose relative contribution to OAS1 binding affinity and activation were investigated using electrophoretic mobility shift assays and enzyme kinetics experiments. Stem loop I, comprising nucleotides 1-73, is dispensable for maximum OAS1 activation, as a construct containing only SLII and SLIII was capable of enzymatic activation. Mutations to the RNA binding site of OAS1 confirmed the specificity of the interaction. The purity, monodispersity and homogeneity of the 5′-end (SLI/II/III) and OAS1 were evaluated using dynamic light scattering and analytical ultra-centrifugation. Solution conformations of both the 5′-end RNA of WNV and OAS1 were then elucidated using small-angle x-ray scattering. In the context of purified components in vitro, these data demonstrate the recognition of conserved secondary structural elements of the WNV genome by a member of the interferon-mediated innate immune response

    A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals

    Get PDF
    The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.National Human Genome Research Institute (U.S.)National Institute of General Medical Sciences (U.S.) (Grant number GM82901)National Science Foundation (U.S.). Postdoctural Fellowship (Award 0905968)National Science Foundation (U.S.). Career (0644282)National Institutes of Health (U.S.) (R01-HG004037)Alfred P. Sloan Foundation.Austrian Science Fund. Erwin Schrodinger Fellowshi
    corecore