88 research outputs found

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys

    Get PDF
    We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals. We analyzed the discharge of 108 MSTd neurons responding to visual motion stimuli. The majority (69/108 = 64%) were also modulated during smooth pursuit. However, in nearly all (104/108 = 96%) of the MSTd neurons tested, there was no significant discharge modulation during the delay periods that required memory of visual motion-direction or preparation for smooth pursuit or not-to-pursue. Only 4 neurons of the 108 (4%) exhibited significantly higher discharge rates during the delay periods; however, their responses were non-directional and not instruction specific. Representative signals in the MSTd clearly differed from those in the SEF during memory-based smooth pursuit. MSTd neurons are unlikely to provide signals for memory of visual motion-direction or preparation for smooth pursuit eye movements

    Modelling Visual Neglect: Computational Insights into Conscious Perception

    Get PDF
    Background: Visual neglect is an attentional deficit typically resulting from parietal cortex lesion and sometimes frontal lesion. Patients fail to attend to objects and events in the visual hemifield contralateral to their lesion during visual search. Methodology/Principal Finding: The aim of this work was to examine the effects of parietal and frontal lesion in an existing computational model of visual attention and search and simulate visual search behaviour under lesion conditions. We find that unilateral parietal lesion in this model leads to symptoms of visual neglect in simulated search scan paths, including an inhibition of return (IOR) deficit, while frontal lesion leads to milder neglect and to more severe deficits in IOR and perseveration in the scan path. During simulations of search under unilateral parietal lesion, the model’s extrastriate ventral stream area exhibits lower activity for stimuli in the neglected hemifield compared to that for stimuli in the normally perceived hemifield. This could represent a computational correlate of differences observed in neuroimaging for unconscious versus conscious perception following parietal lesion. Conclusions/Significance: Our results lead to the prediction, supported by effective connectivity evidence, that connections between the dorsal and ventral visual streams may be an important factor in the explanation of perceptua

    Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na<sup>+ </sup>and K<sup>+ </sup>current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na<sup>+</sup>, K<sup>+</sup>, and Ca<sup>2+ </sup>currents, and make prominent synapses with afferent nerve fibers. Na<sup>+ </sup>salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.</p> <p>Results</p> <p>Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na<sup>+ </sup>and K<sup>+ </sup>currents, but lacked voltage-gated Ca<sup>2+ </sup>currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca<sup>2+ </sup>current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds.</p> <p>Conclusion</p> <p>The principal finding is that amiloride-sensitive Na<sup>+ </sup>channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.</p

    Distractors associated with reward break through the focus of attention

    Get PDF
    In the present study, we investigated the conditions in which rewarded distractors have the ability to capture attention, even when attention is directed toward the target location. Experiment 1 showed that when the probability of obtaining reward was high, all salient distractors captured attention, even when they were not associated with reward. This effect may have been caused by participants suboptimally using the 100%-valid endogenous location cue. Experiment 2 confirmed this result by showing that salient distractors did not capture attention in a block in which no reward was expected. In Experiment 3, the probability of the presence of a distractor was high, but it only signaled reward availability on a low number of trials. The results showed that those very infrequent distractors that signaled reward captured attention, whereas the distractors (both frequent and infrequent ones) not associated with reward were simply ignored. The latter experiment indicates that even when attention is directed to a location in space, stimuli associated with reward break through the focus of attention, but equally salient stimuli not associated with reward do not

    Effect of cell immobilization and pH on Scheffersomyces stipitis growth and fermentation capacity in rich and inhibitory media

    Get PDF
    Background A wide range of value-added products can potentially be produced by bioprocessing hardwood spent sulfite liquors (HSSLs) that are by-products of pulp and paper industry with a high pentose sugar content. However, besides sugars, HSSLs contain considerable amounts of sulfonated lignin derivatives and acetic acid that inhibit the metabolic activity of most microorganisms. Scheffersomyces stipitis is a yeast with high capacity to ferment the pentose sugar xylose under appropriate microaerophilic conditions but it has limited tolerance to HSSL inhibitors. In the present study, cultivations of suspended and immobilized S. stipitis were compared in terms of growth capacity and by-product formation using rich medium and HSSL to investigate whether the immobilization of cells in calcium alginate beads could be a protection against inhibitors while favoring the presence of microaerophilic conditions. Results Whereas cell immobilization clearly favored the fermentative metabolism in rich medium, pH control was found to play a more important role than cell immobilization on the ethanol production efficiency from bio-detoxified HSSL (bdHSSL), leading to an improvement of 1.3-fold on the maximum ethanol productivity than using suspended cells. When immobilization and pH control were applied simultaneously, the ethanol yield improved by 1.3-fold with unchanged productivity, reaching 0.26 g ethanol.(g glucose\&#8201;+\&#8201;xylose)\&#8722;1. Analysis of the immobilized beads inside revealed that the cells had grown in the opposite direction of the cortex. Conclusions Immobilization and pH control at 5.5, when applied simultaneously, have a positive impact on the fermentative metabolism of S. stipitis, improving the ethanol production efficiency. For the first time light microscopic analysis of the beads suggested that the nutrient and mass transfer limitations played a more important role in the fermentation than a possible protective role against inhibitors. Keywords Scheffersomyces stipitis Hardwood spent sulfite liquor Cell immobilization Light microscopy Ca alginate beads Xylose fermentation Stress toleranc

    Association between Catechol-O-Methyltrasferase Val108/158Met Genotype and Prefrontal Hemodynamic Response in Schizophrenia

    Get PDF
    BACKGROUND:"Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT) and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS). METHODOLOGY/PRINCIPAL FINDINGS:Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals) matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE:These data suggest that the prefrontal NIRS signals can noninvasively detect the impact of COMT variation in patients with schizophrenia. NIRS may be a promising candidate translational approach in psychiatric neuroimaging

    Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating

    Get PDF
    Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception
    corecore