97 research outputs found

    Antibodies to a Full-Length VAR2CSA Immunogen Are Broadly Strain-Transcendent but Do Not Cross-Inhibit Different Placental-Type Parasite Isolates

    Get PDF
    The high molecular weight, multidomain VAR2CSA protein mediating adhesion of Plasmodium falciparum-infected erythrocytes in the placenta is the leading candidate for a pregnancy malaria vaccine. However, it has been difficult so far to generate strong and consistent adhesion blocking antibody responses against most single-domain VAR2CSA immunogens. Recent advances in expression of the full-length recombinant protein showed it binds with much greater specificity and affinity to chondroitin sulphate A (CSA) than individual VAR2CSA domains. This raises the possibility that a specific CSA binding pocket(s) is formed in the full length antigen and could be an important target for vaccine development. In this study, we compared the immunogenicity of a full-length VAR2CSA recombinant protein containing all six Duffy binding-like (DBL) domains to that of a three-domain construct (DBL4-6) in mice and rabbits. Animals immunized with either immunogen acquired antibodies reacting with several VAR2CSA individual domains by ELISA, but antibody responses against the highly conserved DBL4 domain were weaker in animals immunized with full-length DBL1-6 recombinant protein compared to DBL4-6 recombinant protein. Both immunogens induced cross-reactive antibodies to several heterologous CSA-binding parasite lines expressing different VAR2CSA orthologues. However, antibodies that inhibited adhesion of parasites to CSA were only elicited in rabbits immunized with full-length immunogen and inhibition was restricted to the homologous CSA-binding parasite. These findings demonstrate that partial and full-length VAR2CSA immunogens induce cross-reactive antibodies, but inhibitory antibody responses to full-length immunogen were highly allele-specific and variable between animal species

    Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study

    Get PDF
    <p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p> <p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p> <p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 ร— 10โˆ’6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 ร— 10โˆ’8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 ร— 10โˆ’6 ≤ P ≤ .02).</p> <p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p&gt

    Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum

    Get PDF
    Antigenic variation is a subtle process of fundamental importance to the survival of a microbial pathogen. In Plasmodium falciparum malaria, PfEMP1 is the major variable antigen and adhesin expressed at the surface of the infected erythrocyte, which is encoded for by members of a family of 60 var-genes. Peri-nuclear repositioning and epigenetic mechanisms control their mono-allelic expression. The switching of PfEMP1 depends in part on variable transition rates and short-lived immune responses to shared minor epitopes. Here we show var-genes to switch to a common gene that is highly transcribed, but sparsely translated into PfEMP1 and not expressed at the erythrocyte surface. Highly clonal and adhesive P. falciparum, which expressed distinct var-genes and the corresponding PfEMP1s at onset, were propagated without enrichment or panning. The parasites successively and spontaneously switched to transcribe a shared var-gene (var2csa) matched by the loss of PfEMP1 surface expression and host cell-binding. The var2csa gene repositioned in the peri-nuclear area upon activation, away from the telomeric clusters and heterochromatin to transcribe spliced, full-length RNA. Despite abundant transcripts, the level of intracellular PfEMP1 was low suggesting post-transcriptional mechanisms to partake in protein expression. In vivo, off-switching and translational repression may constitute one pathway, among others, coordinating PfEMP1 expression

    Multifactorial day hospital intervention to reduce falls in high risk older people in primary care: a multi-centre randomised controlled trial [ISRCTN46584556]

    Get PDF
    Falls in older people are a major public health concern in terms of morbidity, mortality and cost. Previous studies suggest that multifactorial interventions can reduce falls, and many geriatric day hospitals are now offering falls intervention programmes. However, no studies have investigated whether these programmes, based in the day hospital are effective, nor whether they can be successfully applied to high-risk older people screened in primary care. The hypothesis is that a multidisciplinary falls assessment and intervention at Day hospitals can reduce the incidence of falls in older people identified within primary care as being at high risk of falling. This will be tested by a pragmatic parallel-group randomised controlled trial in which the participants, identified as at high risk of falling, will be randomised into either the intervention Day hospital arm or to a control (current practice) arm. Those participants preferring not to enter the full randomised study will be offered the opportunity to complete brief diaries only at monthly intervals. This data will be used to validate the screening questionnaire. Three day hospitals (2 Nottingham, 1 Derby) will provide the interventions, and the University of Nottingham's Departments of Primary Care, the Division of Rehabilitation and Ageing Unit, and the Trent Institute for Health Service Research will provide the methodological and statistical expertise. Four hundred subjects will be randomised into the two arms. The primary outcome measure will be the rate of falls over one year. Secondary outcome measures will include the proportion of people experiencing at least one fall, the proportion of people experiencing recurrent falls (>1), injuries, fear of falling, quality of life, institutionalisation rates, and use of health services. Cost-effectiveness analyses will be performed to inform health commissioners about resource allocation issues. The importance of this trial is that the results may be applicable to any UK day hospital setting. SITES: General practices across Nottinghamshire and Derbyshire. Day hospitals: Derbyshire Royal Infirmary (Southern Derbyshire Acute Hospitals NHS Trust) Sherwood Day Service (Nottingham City Hospital Trust) Leengate Day Hospital (Queen's Medical Centre Nottingham University Hospital NHS Trust

    Differential Recognition of P. falciparum VAR2CSA Domains by Naturally Acquired Antibodies in Pregnant Women from a Malaria Endemic Area

    Get PDF
    Plasmodium falciparum infected red blood cells (iRBC) express variant surface antigens (VSA) of which VAR2CSA is involved in placental sequestration and causes pregnancy-associated malaria (PAM). Primigravidae are most susceptible to PAM whereas antibodies associated with protection are often present at higher levels in multigravid women. However, HIV co-infection with malaria has been shown to alter this parity-dependent acquisition of immunity, with more severe symptoms as well as more malaria episodes in HIV positive women versus HIV negative women of a similar parity.Using VAR2CSA DBL-domains expressed on the surface of CHO-745 cells we quantified levels of DBL-domain specific IgG in sera from pregnant Malawian women by flow cytometry. Dissociations constants of DBL5epsilon specific antibodies were determined using a surface plasmon resonance technique, as an indication of antibody affinities.VAR2CSA DBL5epsilon was recognized in a gender and parity-dependent manner with anti-DBL5epsilon IgG correlating significantly with IgG levels to VSA-PAM on the iRBC surface. HIV positive women had lower levels of anti-DBL5epsilon IgG than HIV negative women of similar parity. In primigravidae, antibodies in HIV positive women also showed significantly lower affinity to VAR2CSA DBL5epsilon.Pregnant women from a malaria-endemic area had increased levels of anti-DBL5epsilon IgG by parity, indicating this domain of VAR2CSA to be a promising vaccine candidate against PAM. However, it is important to consider co-infection with HIV, as this seems to change the properties of antibody response against malaria. Understanding the characteristics of antibody response against VAR2CSA is undoubtedly imperative in order to design a functional and efficient vaccine against PAM

    Cell Cycle Gene Networks Are Associated with Melanoma Prognosis

    Get PDF
    BACKGROUND: Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. CONCLUSIONS/SIGNIFICANCE: This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic biomarkers and drug targets
    • โ€ฆ
    corecore