7,312 research outputs found

    Massive stars in the Cl 1813-178 Cluster. An episode of massive star formation in the W33 complex

    Full text link
    Young massive (M >10^4 Msun) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main sequence stars with masses between 25 and 100 Msun. A population with age of 4-4.5 Myr and a mass of ~10000 Msun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.Comment: 11 Figures. Accepted for publication in Ap

    The P Cygni supergiant [OMN2000] LS1 – implications for the star formation history of W51

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200911980Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation within the host complex W51. Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties of [OMN2000] LS1 , and a combination of theoretical evolutionary calculations and Monte Carlo simulations to apply limits on the star formation history of W51. Results. We find the spectrum of [OMN2000] LS1 to be consistent with that of a P Cygni supergiant. With a temperature in the range of 13.2–13.7 kK and log( ) , it is significantly cooler, less luminous, and less massive than proposed by previous authors. The presence of such a star within W51 shows that star formation has been underway for at least 3 Myr, while the formation of massive O stars is still on going. The lack of a population of evolved red supergiants within the complex shows that the rate of formation of young massive clusters at ages 9 Myr was lower than currently observed. We find no evidence of internally triggered, sequential star formation within W51, and favour the suggestion that star formation has proceeded at multiple indepedent sites within the GMC. Along with other examples, such as the G305 and Carina star-forming regions, we suggest that W51 is a Galactic analogue of the ubiquitous star cluster complexes seen in external galaxies such as M51 and NGC2403.Peer reviewe

    Detections of massive stars in the cluster MCM2005b77, in the star-forming regions GRS G331.34−-00.36 (S62) and GRS G337.92−-00.48 (S36)

    Full text link
    Large infrared and millimeter wavelength surveys of the Galactic plane have unveiled more than 600 new bubble HII regions and more than 3000 candidate star clusters. We present a study of the candidate clusters MCM2005b72, DBS2003-157, DBS2003-172, and MCM2005b77, based on near-infrared spectroscopy taken with SofI on the NTT and infrared photometry from the 2MASS, VVV, and GLIMPSE surveys. We find that (1) MCM2005b72 and DBS2003-157 are subregions of the same star-forming region, HII GRS G331.34-00.36 (bubble S62). MCM2005b72 coincides with the central part of this HII region, while DBS2003-157 is a bright mid-infrared knot of the S62 shell. We detected two O-type stars at extinction \Aks=1.0-1.3 mag. Their spectrophotometric properties are consistent with the near-kinematic distance to GRS G331.34-00.36 of 3.9pm0.3 kpc. (2) DBS2003-172 coincides with a bright mid-infrared knot in the S36 shell (GRS G337.92-00.48), where we detected a pair of candidate He I stars embedded in a small cometary nebula. (3) The stellar cluster MCM2005b77 is rich in B-type stars, has an average Aks of 0.91 mag, and is adjacent to the HII region IRAS 16137-5025. The average spectrophotometric distance of ∼5.0\sim 5.0 kpc matches the near-kinematic distance to IRAS 16137-5025 of 5.2pm0.1 kpc.Comment: 22 pages, 11 Figures, ApJ accepte

    HST/NICMOS observations of the GLIMPSE9 stellar cluster

    Full text link
    We present HST/NICMOS photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H-Ks =1 mag, indicating an interstellar extinction Aks=1.6\pm0.2 mag. The spectra of the three brightest stars show deep CO band-heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2\pm0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600\pm400 Msun, integrated down to 1 Msun. In the vicinity of GLIMPSE9 are several HII regions and SNRs, all of which (including GLIMPSE 9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.Comment: 13 pages, 14 figures. accepted for publication in ApJ. A version with high-resolution figures can be found at the following location ftp://ftp.rssd.esa.int/pub/mmessine/ms.pdf New version with updated reference

    The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    Get PDF
    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge

    Measurements of vacuum magnetic birefringence using permanent dipole magnets: the PVLAS experiment

    Get PDF
    The PVLAS collaboration is presently assembling a new apparatus (at the INFN section of Ferrara, Italy) to detect vacuum magnetic birefringence (VMB). VMB is related to the structure of the QED vacuum and is predicted by the Euler-Heisenberg-Weisskopf effective Lagrangian. It can be detected by measuring the ellipticity acquired by a linearly polarised light beam propagating through a strong magnetic field. Using the very same optical technique it is also possible to search for hypothetical low-mass particles interacting with two photons, such as axion-like (ALP) or millicharged particles (MCP). Here we report results of a scaled-down test setup and describe the new PVLAS apparatus. This latter one is in construction and is based on a high-sensitivity ellipsometer with a high-finesse Fabry-Perot cavity (>4×105>4\times 10^5) and two 0.8 m long 2.5 T rotating permanent dipole magnets. Measurements with the test setup have improved by a factor 2 the previous upper bound on the parameter AeA_e, which determines the strength of the nonlinear terms in the QED Lagrangian: Ae(PVLAS)<3.3×10−21A_e^{\rm (PVLAS)} < 3.3 \times 10^{-21} T−2^{-2} 95% c.l. Furthermore, new laboratory limits have been put on the inverse coupling constant of ALPs to two photons and confirmation of previous limits on the fractional charge of millicharged particles is given

    New PVLAS model independent limit for the axion coupling to γγ\gamma\gamma for axion masses above 1meV

    Full text link
    During 2014 the PVLAS experiment has started data taking with a new apparatus installed at the INFN Section of Ferrara, Italy. The main target of the experiment is the observation of magnetic birefringence of vacuum. According to QED, the ellipticity generated by the magnetic birefringence of vacuum in the experimental apparatus is expected to be ψ(QED)≈5×10−11\psi^{\rm(QED)} \approx 5\times10^{-11}. No ellipticity signal is present so far with a noise floor ψ(noise)≈2.5×10−9\psi^{\rm(noise)} \approx 2.5\times10^{-9} after 210 hours of data taking. The resulting ellipticity limit provides the best model independent upper limit on the coupling of axions to γγ\gamma\gamma for axion masses above 10−310^{-3}eV

    Measurement of the Cotton Mouton effect of water vapour

    Full text link
    In this paper we report on a measurement of the Cotton Mouton effect of water vapour. Measurement performed at room temperature (T=301T=301 K) with a wavelength of 1064 nm gave the value Δnu=(6.67±0.45)⋅10−15\Delta n_u = (6.67 \pm 0.45) \cdot 10^{-15} for the unit magnetic birefringence (1 T magnetic field and atmospheric pressure)

    First results from the new PVLAS apparatus: a new limit on vacuum magnetic birefringence

    Full text link
    Several groups are carrying out experiments to observe and measure vacuum magnetic birefringence, predicted by Quantum Electrodynamics (QED). We have started running the new PVLAS apparatus installed in Ferrara, Italy, and have measured a noise floor value for the unitary field magnetic birefringence of vacuum Δnu(vac)=(4±20)×10−23\Delta n_u^{\rm (vac)}= (4\pm 20) \times 10^{-23} T−2^{-2} (the error represents a 1σ\sigma deviation). This measurement is compatible with zero and hence represents a new limit on vacuum magnetic birefringence deriving from non linear electrodynamics. This result reduces to a factor 50 the gap to be overcome to measure for the first time the value of Δnu(vac,QED)\Delta n_u^{\rm (vac,QED)} predicted by QED: Δnu(vac,QED)=4×10−24\Delta n_u^{\rm (vac,QED)}= 4\times 10^{-24} ~T−2^{-2}. These birefringence measurements also yield improved model-independent bounds on the coupling constant of axion-like particles to two photons, for masses greater than 1 meV, along with a factor two improvement of the fractional charge limit on millicharged particles (fermions and scalars), including neutrinos
    • …
    corecore