Vacuum magnetic birefringence was predicted long time ago and is still
lacking a direct experimental confirmation. Several experimental efforts are
striving to reach this goal, and the sequence of results promises a success in
the next few years. This measurement generally is accompanied by the search for
hypothetical light particles that couple to two photons. The PVLAS experiment
employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In
this paper we report on the latest experimental results of this experiment. The
data are analysed taking into account the intrinsic birefringence of the
dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic
birefringence, the measurements also allow the model-independent exclusion of
new regions in the parameter space of axion-like and milli-charged particles.
In particular, these last limits hold also for all types of neutrinos,
resulting in a laboratory limit on their charge