1,250 research outputs found
The Distribution of Bar and Spiral Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamental property
of the galaxy population that has only begun to be explored. We have applied
the bar/spiral separation method of Buta, Block, and Knapen to derive the
distribution of maximum relative gravitational bar torques, Q_b, for 147 spiral
galaxies in the statistically well-defined Ohio State University Bright Galaxy
Survey (OSUBGS) sample. Our goal is to examine the properties of bars as
independently as possible of their associated spirals. We find that the
distribution of bar strength declines smoothly with increasing Q_b, with more
than 40% of the sample having Q_b <= 0.1. In the context of recurrent bar
formation, this suggests that strongly-barred states are relatively short-lived
compared to weakly-barred or non-barred states. We do not find compelling
evidence for a bimodal distribution of bar strengths. Instead, the distribution
is fairly smooth in the range 0.0 <= Q_b < 0.8. Our analysis also provides a
first look at spiral strengths Q_s in the OSU sample, based on the same torque
indicator. We are able to verify a possible weak correlation between Q_s and
Q_b, in the sense that galaxies with the strongest bars tend also to have
strong spirals.Comment: Accepted for publication in the Astronomical Journal, August 2005
issue (LaTex, 23 pages + 11 figures, uses aastex.cls
Differential requirements for actin during yeast and mammalian endocytosis
Key features of clathrin-mediated endocytosis have been conserved across evolution. However, endocytosis in Saccharomyces cerevisiae is completely dependent on a functional actin cytoskeleton, whereas actin appears to be less critical in mammalian cell endocytosis. We reveal that the fundamental requirement for actin in the early stages of yeast endocytosis is to provide a strong framework to support the force generation needed to direct the invaginating plasma membrane into the cell against turgor pressure. By providing osmotic support, pressure differences across the plasma membrane were removed and this reduced the requirement for actin-bundling proteins in normal endocytosis. Conversely, increased turgor pressure in specific yeast mutants correlated with a decreased rate of endocytic patch invagination
The Potential-Density Phase Shift Method for Determining the Corotation Radii in Spiral and Barred Galaxies
We have developed a new method for determining the corotation radii of
density waves in disk galaxies, which makes use of the radial distribution of
an azimuthal phase shift between the potential and density wave patterns. The
approach originated from improved theoretical understandings of the relation
between the morphology and kinematics of galaxies, and on the dynamical
interaction between density waves and the basic-state disk stars which results
in the secular evolution of disk galaxies. In this paper, we present the
rationales behind the method, and the first application of it to several
representative barred and grand-design spiral galaxies, using near-infrared
images to trace the mass distributions, as well as to calculate the potential
distributions used in the phase shift calculations. We compare our results with
those from other existing methods for locating the corotations, and show that
the new method both confirms the previously-established trends of bar-length
dependence on galaxy morphological types, as well as provides new insights into
the possible extent of bars in disk galaxies. Application of the method to a
larger sample and the preliminary analysis of which show that the phase shift
method is likely to be a generally-applicable, accurate, and essentially
model-independent method for determining the pattern speeds and corotation
radii of single or nested density wave patterns in galaxies. Other implications
of this work are: most of the nearby bright disk galaxies appear to possess
quasi-stationary spiral modes; that these density wave modes and the associated
basic state of the galactic disk slowly transform over time; and that
self-consistent N-particle systems contain physics not revealed by the passive
orbit analysis approaches.Comment: 48 pages, 16 figures. Accepted for publication in the Astronomical
Journa
A burst search for gravitational waves from binary black holes
Compact binary coalescence (CBC) is one of the most promising sources of
gravitational waves. These sources are usually searched for with matched
filters which require accurate calculation of the GW waveforms and generation
of large template banks. We present a complementary search technique based on
algorithms used in un-modeled searches. Initially designed for detection of
un-modeled bursts, which can span a very large set of waveform morphologies,
the search algorithm presented here is constrained for targeted detection of
the smaller subset of CBC signals. The constraint is based on the assumption of
elliptical polarisation for signals received at the detector. We expect that
the algorithm is sensitive to CBC signals in a wide range of masses, mass
ratios, and spin parameters. In preparation for the analysis of data from the
fifth LIGO-Virgo science run (S5), we performed preliminary studies of the
algorithm on test data. We present the sensitivity of the search to different
types of simulated CBC waveforms. Also, we discuss how to extend the results of
the test run into a search over all of the current LIGO-Virgo data set.Comment: 12 pages, 4 figures, 2 tables, submitted for publication in CQG in
the special issue for the conference proceedings of GWDAW13; corrected some
typos, addressed some minor reviewer comments one section restructured and
references updated and correcte
Star formation and figure rotation in the early-type galaxy NGC2974
We present Galaxy Evolution Explorer (GALEX) far (FUV) and near (NUV)
ultraviolet imaging of the nearby early-type galaxy NGC2974, along with
complementary ground-based optical imaging. In the ultraviolet, the galaxy
reveals a central spheroid-like component and a newly discovered complete outer
ring of radius 6.2kpc, with suggestions of another partial ring at an even
larger radius. Blue FUV-NUV and UV-optical colours are observed in the centre
of the galaxy and from the outer ring outward, suggesting young stellar
populations (< 1Gyr) and recent star formation in both locations. This is
supported by a simple stellar population model which assumes two bursts of star
formation, allowing us to constrain the age, mass fraction and surface mass
density of the young component pixel by pixel. Overall, the mass fraction of
the young component appears to be just under 1per cent (lower limit,
uncorrected for dust extinction). The additional presence of a nuclear and an
inner ring (radii 1.4 and 2.9kpc, respectively), as traced by [OIII] emission,
suggests ring formation through resonances. All three rings are consistent with
a single pattern speed of km/s/kpc, typical of S0 galaxies and only
marginally slower than expected for a fast bar if traced by a small observed
surface brightness plateau. This thus suggests that star formation and
morphological evolution in NGC2974 at the present epoch are primarily driven by
a rotating asymmetry (probably a large-scale bar), despite the standard
classification of NGC2974 as an E4 elliptical.Comment: 13 pages, 10 figures, Changed content, Accepted for publication in
MNRA
Doing audio-visual montage to explore time and space: The everyday rhythms of Billingsgate Fish Market
This article documents, shows and analyses the everyday rhythms of Billingsgate, Londonâs wholesale fish market. It takes the form of a short film based an audio-visual montage of time-lapse photography and sound recordings, and a textual account of the dimensions of market life revealed by this montage. Inspired by Henri Lefebvreâs Rhythmanalysis, and the embodied experience of moving through and sensing the market, the film renders the elusive quality of the market and the work that takes place within it to make it happen. The composite of audio-visual recordings immerses viewers in the space and atmosphere of the market and allows us to perceive and analyse rhythms, patterns, flows, interactions, temporalities and interconnections of market work, themes that this article discusses. The film is thereby both a means of showing market life and an analytic tool for making sense of it. This article critically considers the documentation, evocation and analysis of time and space in this way
A Kinematic Link between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 & NGC 4388
We present direct kinematic evidence for bar streaming motions in two active
galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot
Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the
University of Hawaii 2.2-m telescope to derive the two-dimensional velocity
field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the
Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the
detection of the bar potential from the Fabry-Perot data does not rely on the
existence of inner Lindblad resonances or strong bar-induced shocks. Simple
kinematic models which approximate the intrinsic gas orbits as nonintersecting,
inclined elliptical annuli that conserve angular momentum characterize the
observed velocity fields. Box-shaped bulges in both NGC 3079 and NGC 4388 are
confirmed using new near-infrared images to reduce dust obscuration.
Morphological analysis of starlight in these galaxies is combined with the gas
kinematics derived from the Fabry-Perot spectra to test evolutionary models of
stellar bars that involve transitory boxy bulges, and to quantify the
importance of such bars in fueling active nuclei. Our data support the
evolutionary bar models, but fail to prove convincingly that the stellar bars
in NGC 3079 and NGC 4388 directly trigger or sustain the nuclear activity.
(abridged)Comment: 31 pages, 18 figures, Latex, requires aaspp4.sty. Accepted for the
Astronomical Journal (November issue
Mechanisms of the Vertical Secular Heating of a Stellar Disk
We investigate the nonlinear growth stages of bending instability in stellar
disks with exponential radial density profiles.We found that the unstable modes
are global (the wavelengths are larger than the disk scale lengths) and that
the instability saturation level is much higher than that following from a
linear criterion. The instability saturation time scales are of the order of
one billion years or more. For this reason, the bending instability can play an
important role in the secular heating of a stellar disk in the direction.
In an extensive series of numerical -body simulations with a high spatial
resolution, we were able to scan in detail the space of key parameters (the
initial disk thickness , the Toomre parameter , and the ratio of dark
halo mass to disk mass ). We revealed three distinct
mechanisms of disk heating in the direction: bending instability of the
entire disk, bending instability of the bar, and heating on vertical
inhomogeneities in the distribution of stellar matter.Comment: 22 pages including 8 figures. To be published in Astronomy Letters
(v.29, 2003
The Shape and Figure Rotation of NGC 2915's Dark Halo
NGC 2915 is a blue compact dwarf galaxy with a very extended HI disk showing
a short central bar and extended spiral arms, both reaching far beyond the
optical component. We use Tremaine & Weinberg (1984) method to measure the
pattern speed of the bar from HI radio synthesis data. Our measurements yield a
pattern speed of 0.21+/-0.06 km/s/arcsec (8.0+/-2.4 km/s/kpc for D=5.3 Mpc), in
disagreement with the general view that corotation in barred disks lies just
outside the end of the bar, but consistent with recent models of barred
galaxies with dense dark matter halos. Our adopted bar semi-length puts
corotation at more than 1.7 bar radii. The existence of the pattern is also
problematic. Because NGC 2915 is isolated, interactions cannot account for the
structure observed in the HI disk. We also demonstrate that the low observed
disk surface density and the location of the pseudo-rings make it unlikely that
swing amplification or bar-driven spiral arms could explain the bar and spiral
pattern.
Based on the similarity of the dark matter and HI surface density profiles,
we discuss the possibility of dark matter distributed in a disk and following
closely the HI distribution. The disk then becomes unstable and can naturally
form a bar and spiral pattern. However, this explanation is hard to reconcile
with some properties of NGC 2915. We also consider the effect of a massive and
extended triaxial dark matter halo with a rotating figure. The existence of
such halos is supported by CDM simulations showing strongly triaxial dark halos
with slow figure rotation. The observed structure of the HI disk can then arise
through forcing by the rotating triaxial figure. We associate the measured
pattern speed in NGC 2915 with the figure rotation of its dark halo.Comment: 37 pages, including 8 figures and 2 tables (AASTeX, aaspp4.sty).
Fig.1 and 2 available as jpg. Accepted for publication in The Astronomical
Journal. Online manuscript with PostScript figures available at:
http://www.strw.leidenuniv.nl/~bureau/pub_list.htm
Evolution of Stellar Bars in Live Axisymmetric Halos: Recurrent Buckling and Secular Growth
Evolution of stellar bars in disk galaxies is accompanied by dynamical
instabilities and secular changes. Following the vertical buckling instability,
the bars are known to weaken dramatically and develop a pronounced boxy/peanut
shape when observed edge-on. Using high-resolution N-body simulations of
stellar disks embedded in live axisymmetric dark matter halos, we have
investigated the long-term changes in the bar morphology, specifically the
evolution of the bar size, its vertical structure and exchange of angular
momentum. We find that following the initial buckling, the bar resumes its
growth from deep inside the corotation radius and follows the Ultra-Harmonic
resonance thereafter. We also find that this secular bar growth triggers a
spectacular secondary vertical buckling instability which leads to the
appearance of characteristic boxy/peanut/X-shaped bulges. The secular bar
growth is crucial for the recurrent buckling to develop. Furthermore, the
secondary buckling is milder, persists over a substantial period of time, ~3
Gyr, and can have observational counterparts. Overall, the stellar bars show
recurrent behavior in their properties and evolve by increasing their linear
and vertical extents, both dynamically and secularly. We also demonstrate
explicitly that the prolonged growth of the bar is mediated by continuous
angular momentum transfer from the disk to the surrounding halo, and that this
angular momentum redistribution is resonant in nature -- a large number of
lower resonances trap disk and halo particles and this trapping is robust, in a
broad agreement with the earlier results in the literature.Comment: Revised (typos, references, additional figure), 15 pp., 11 figures
(high-resolution figures and Mpeg Animation movie can be requested directly
from the authors), The Astrophysical Journal, 637, in press. The Animation is
available from http://www.pa.uky.edu/~shlosman/research/galdyn/movies.htm
- âŠ