256 research outputs found

    G-quadruplexes in Prague: a Bohemian Rhapsody

    Get PDF
    The Sixth International Meeting on Quadruplex Nucleic Acids was held at the Hotel Internationale in Prague, Czech Republic from 31 May – 3 June 2017. A vibrant interdisciplinary community of almost over 300 scientists gathered to share their newest results in this exciting field and exchange ideas for further investigations

    Nouveaux ligands de quadruplexes (approches in silico et in vitro)

    Get PDF
    Les séquences d ADN et d'ARN riches en Guanines peuvent adopter des conformations inhabituelles connues sous le nom de G-quadruplexes (G4). Les topologies et les formes de ces structures fascinantes sont très diverses. Les G4 sont stabilisés par la présence de cations monovalents et des liaisons Hydrogène de type Hoogsteen. De petites molécules contribuent également à la formation de formes stables, principalement par des interactions d'empilement p - p. Bien que les G4 soient connus depuis des décennies, l'intérêt de la communauté scientifique a été stimulé par la découverte de leur effet potentiellement inhibiteur sur la télomérase, une transcriptase inverse impliquée dans la transformation maligne de la plupart des cellules cancéreuses. En ce qui concerne la télomérase, le cancer et G4, plusieurs groupes ont été impliqués dans la découverte de nouveaux stabilisateurs G4 qui peuvent indirectement inhiber l'enzyme. Des centaines de ligands ont été identifiés par ce biais au cours de la dernière décennie et c'est encore un domaine très actif. Prenant en compte les avantages et la facilité qu'offre l'identification de nouvelles structures à l'aide de techniques de calcul grâce à des modèles mathématiques simples et reproductibles, nous avons entrepris un criblage à haut débit et à faible coût de calcul afin d identifier de nouveaux ligands G4. Avec l'utilisation de la modélisation QSAR nous pouvons prédire l IC50 d'un ensemble de composés congénères. Nous avons également été en mesure de relier les descripteurs moléculaires qui apparaissent dans nos modèles avec des caractéristiques structurales que les études de la littérature scientifique et SAR ont rapportés dans les études précédentes, pour un ensemble de ligands congénères. En outre, nous avons construit des modèles différents utilisant des ensembles non congénères de composés en appliquant une stratégie de consensus et pu identifier six ligands approuvés par la FDA qui stabilisent les structures G4. Par la suite, en appliquant des techniques non linéaires et un processus pour le traitement de la base de données que nous avons contruite à partir de publications antérieures, nous avons effectué un criblage virtuel de plus de 500 000 ligands d'une base de données commerciale de composés. Nous avons pu identifier de nouveaux ligands avec une puissance plus forte que les précédentes, qui peuvent également stabiliser d autres structures G4 impliqués dans les processus liés au cancer. Ces observations ouvrent un spectre large de possibilités à explorer. Malgré les limites des techniques de modélisation QSAR explorées tout au long de ce travail, nous considérons qu'elles peuvent être combinées et utilisées avec soin pour répondre à la recherche de nouveaux stabilisateurs G4.DNA and RNA G-rich sequences can adopt unusual arrangements that are known as G-quadruplexes (G4). The topologies and forms of these fascinating structures are very diverse. G4 are stabilized by the presence of monovalent cations and Hoogsteen Hydrogen bonds. Small molecules also contribute to the formation of stable forms mainly via p-p stacking interactions. Although G4s are known for decades, interest in this field started with their potential effect on inhibition of telomerase enzyme, a Reverse Transcriptase involved in the malignant transformation of most cancer cells. With regards to telomerase, cancer and G4, several groups have been involved in the discovery of new G4 stabilizers that would indirectly inhibit the enzyme. Most of the G4 ligands were identified following this paradigm. Hundreds of ligands have been identified during the past decade and this is still a very active field in science. Taking into account the advantages and easiness that offers the identification of new structures using computational techniques we built single and reproducible mathematical models with high screening capacity and low computational cost in order to use them on the identification of G4 ligands. With the use of QSAR modelling we can predict the telIC50 of a congeneric set of compounds. We have also been able to relate the molecular descriptors that appear in ours models with some structural features that scientific literature and SAR studies have reported in previous studies as appropriated for describing the above mentioned activity, also for congeneric set of ligands. Moreover, we built different models using non congeneric sets of compounds applying a consensus strategy and could identify six FDA approved ligands that stabilize G4 structures. Subsequently, by applying nonlinear techniques and a process for the cure of the database proposed for us in previous publications, we have performed a virtual screening of more than 500 000 ligands from a commercial database of compounds, followed of structure-based model in order to reduce the number of candidates. We were able to identify new ligands with stronger potency than the previous ones, which can also stabilize other G4 structures involved in processes related to cancer. These observations open a wide-ranging spectrum of possibilities to be explored. Despite the limitations of the QSAR modelling techniques explored along this work, we consider they can be combined and used carefully to address the search for new G4 stabilizers.BORDEAUX2-Bib. électronique (335229905) / SudocBORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    A fluorescence-based helicase assay: application to the screening of G-quadruplex ligands

    Get PDF
    International audienceHelicases, enzymes that unwind DNA or RNA structure , are present in the cell nucleus and in the mito-chondrion. Although the majority of the helicases unwind DNA or RNA duplexes, some of these proteins are known to resolve unusual structures such as G-quadruplexes (G4) in vitro. G4 may form stable barrier to the progression of molecular motors tracking on DNA. Monitoring G4 unwinding by these enzymes may reveal the mechanisms of the enzymes and provides information about the stability of these structures. In the experiments presented herein, we developed a reliable, inexpensive and rapid fluorescence-based technique to monitor the activity of G4 heli-cases in real time in a 96-well plate format. This system was used to screen a series of G4 structures and G4 binders for their effect on the Pif1 enzyme, a 5 to 3 DNA helicase. This simple assay should be adaptable to analysis of other helicases and G4 structures

    Kinetics of tetramolecular quadruplexes

    Get PDF
    The melting of tetramolecular DNA or RNA quadruplexes is kinetically irreversible. However, rather than being a hindrance, this kinetic inertia allows us to study association and dissociation processes independently. From a kinetic point of view, the association reaction is fourth order in monomer and the dissociation first order in quadruplex. The association rate constant k(on), expressed in M(−3)·s(−1) decreases with increasing temperature, reflecting a negative activation energy (E(on)) for the sequences presented here. Association is favored by an increase in monocation concentration. The first-order dissociation process is temperature dependent, with a very positive activation energy E(off), but nearly ionic strength independent. General rules may be drawn up for various DNA and RNA sequence motifs, involving 3–6 consecutive guanines and 0–5 protruding bases. RNA quadruplexes are more stable than their DNA counterparts as a result of both faster association and slower dissociation. In most cases, no dissociation is found for G-tracts of 5 guanines or more in sodium, 4 guanines or more in potassium. The data collected here allow us to predict the amount of time required for 50% (or 90%) quadruplex formation as a function of strand sequence and concentration, temperature and ionic strength

    Thermal difference spectra: a specific signature for nucleic acid structures

    Get PDF
    We show that nucleic acid structures may be conveniently and inexpensively characterized by their UV thermal difference spectra. A thermal difference spectrum (TDS) is obtained for a nucleic acid by simply recording the ultraviolet absorbance spectra of the unfolded and folded states at temperatures above and below its melting temperature (T(m)). The difference between these two spectra is the TDS. The TDS has a specific shape that is unique for each type of nucleic acid structure, a conclusion that is based on a comparison of >900 spectra from 200 different sequences. The shape of the TDS reflects the subtleties of base stacking interactions that occur uniquely within each type of nucleic acid structure. TDS provides a simple, inexpensive and rapid method to obtain structural insight into nucleic acid structures, which is applicable to both DNA and RNA from short oligomers to polynucleotides. TDS complements circular dichroism as a tool for the structural characterization of nucleic acids in solution

    Kinetics of double-chain reversals bridging contiguous quartets in tetramolecular quadruplexes

    Get PDF
    Repetitive 5′GGXGG DNA segments abound in, or near, regulatory regions of the genome and may form unusual structures called G-quadruplexes. Using NMR spectroscopy, we demonstrate that a family of 5′GCGGXGGY sequences adopts a folding topology containing double-chain reversals. The topology is composed of two bistranded quadruplex monomeric units linked by formation of G:C:G:C tetrads. We provide a complete thermodynamic and kinetic analysis of 13 different sequences using absorbance spectroscopy and DSC, and compare their kinetics with a canonical tetrameric parallel-stranded quadruplex formed by TG(4)T. We demonstrate large differences (up to 10(5)-fold) in the association constants of these quadruplexes depending on primary sequence; the fastest samples exhibiting association rate equal or higher than the canonical TG(4)T quadruplex. In contrast, all sequences studied here unfold at a lower temperature than this quadruplex. Some sequences have thermodynamic stability comparable to the canonical TG(4)T tetramolecular quadruplex, but with faster association and dissociation. Sequence effects on the dissociation processes are discussed in light of structural data

    Predicting and understanding the stability of G-quadruplexes

    Get PDF
    Motivation: G-quadruplexes are stable four-stranded guanine-rich structures that can form in DNA and RNA. They are an important component of human telomeres and play a role in the regulation of transcription and translation. The biological significance of a G-quadruplex is crucially linked with its thermodynamic stability. Hence the prediction of G-quadruplex stability is of vital interest

    G4Killer web application: a tool to design G-quadruplex mutations

    Get PDF
    G-quadruplexes (G4) are important regulatory non-B DNA structures with therapeutic potential. A tool for rational design of mutations leading to decreased propensity for G4 formation should be useful in studying G4 functions. Although tools exist for G4 prediction, no easily accessible tool for the rational design of G4 mutations has been available. RESULTS: We developed a web-based tool termed G4Killer that is based on the G4Hunter algorithm. This new tool is a platform-independent and user-friendly application to design mutations crippling G4 propensity in a parsimonious way (i.e., keeping the primary sequence as close as possible to the original one). The tool is integrated into our DNA analyzer server and allows for generating mutated DNA sequences having the desired lowered G4Hunter score with minimal mutation steps. AVAILABILITY AND IMPLEMENTATION: The G4Killer web tool can be accessed at: http://bioinformatics.ibp.cz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. © The Author(s) 2020. Published by Oxford University Press

    “One Ring to Bind Them All”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

    Get PDF
    Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes), and in addressing both synthetic issues and biological aspects
    corecore