52 research outputs found

    Prevalence of protein intake below recommended in community‐dwelling older adults: a meta‐analysis across cohorts from the PROMISS consortium

    Get PDF
    European Horizon 2020 PROMISS Project ‘PRevention Of Malnutrition In Senior Subjects in the EU’, (grant agreement no. 678732). The content only reflects the author’s view and the commission is not responsible for any use that may be made of the information it contains.Background: Lower protein intake in older adults is associated with loss of muscle mass and strength. The present study aimed to provide a pooled estimate of the overall prevalence of protein intake below recommended (according to different cut-off values) among community-dwelling older adults, both within the general older population and within specific subgroups. Methods: As part of the PRevention Of Malnutrition In Senior Subjects in the EU (PROMISS) project, a meta-analysis was performed using data from four cohorts (from the Netherlands, UK, Canada, and USA) and four national surveys [from the Netherlands, Finland (two), and Italy]. Within those studies, data on protein and energy intake of community-dwelling men and women aged ≥55 years were obtained by either a food frequency questionnaire, 24 h recalls administered on 2 or 3 days, or food diaries administered on 3 days. Protein intake below recommended was based on the recommended dietary allowance of 0.8 g/kg body weight (BW)/d, by using adjusted BW (aBW) instead of actual BW. Cut-off values of 1.0 and 1.2 were applied in additional analyses. Prevalences were also examined for subgroups according to sex, age, body mass index (BMI), education level, appetite, living status, and recent weight loss. Results: The study sample comprised 8107 older persons. Mean ± standard deviation protein intake ranged from 64.3 ± 22.3 (UK) to 80.6 ± 23.7 g/d [the Netherlands (cohort)] or from 0.94 ± 0.38 (USA) to 1.17z ± 0.30 g/kg aBW/d (Italy) when related to BW. The overall pooled prevalence of protein intake below recommended was 21.5% (95% confidence interval: 14.0–30.1), 46.7% (38.3–55.3), and 70.8% (65.1–76.3) using the 0.8, 1.0, and 1.2 cut-off value, respectively. A higher prevalence was observed among women, individuals with higher BMI, and individuals with poor appetite. The prevalence differed only marginally by age, education level, living status, and recent weight loss. Conclusions: In community-dwelling older adults, the prevalence of protein intake below the current recommendation of 0.8 g/kg aBW/d is substantial (14–30%) and increases to 65–76% according to a cut-off value of 1.2 g/kg aBW/d. To what extent the protein intakes are below the requirements of these older people warrants further investigation.publishersversionpublishe

    Choice of tracers for the evaluation of spray deposits

    Get PDF
    Tracer substances, used to evaluate spraying effectiveness, ordinarily modify the surface tension of aqueous solutions. This study aimed to establish a method of using tracers to evaluate distribution and amount of spray deposits, adjusted to the surface tension of the spraying solution. The following products were tested: 0.15% Brilliant Blue, 0.15% Saturn Yellow in 0.015% Vixilperse lignosulfonate, and 0.005% sodium fluorescein, and mixtures of Brilliant Blue plus Saturn Yellow and Brilliant Blue plus sodium fluorescein at the same concentrations. Solutions were deposited on citrus leaves and stability was determined by measuring fluorescence and optical density of solutions without drying, dried in the dark and exposed to sunlight for 2, 4 and 8 h. These values were compared to those obtained directly in water. The static surface tension of the tracer solution was determined by weighing droplets formed during a period of 20 to 40 seconds. The Brilliant Blue and Saturn Yellow mixture at 0.15% was stable under all conditions tested. It was not absorbed by the leaves and maintained the same surface tension as that of water, thus permitting concentration adjustment to the same levels used for agrochemical products, and allowing the development of a qualitative method based on visual evaluation of the distribution of the pigment under ultraviolet light and of a quantitative method based on the determination of the amount of the dye deposited in the same solution. Spray deposition could be evaluated at different surface tensions of the spraying solution, simulating the effect of agrochemical formulations
    corecore