349 research outputs found
Generic scale of the "scale-free" growing networks
We show that the connectivity distributions of scale-free growing
networks ( is the network size) have the generic scale -- the cut-off at
. The scaling exponent is related to the exponent
of the connectivity distribution, . We propose the
simplest model of scale-free growing networks and obtain the exact form of its
connectivity distribution for any size of the network. We demonstrate that the
trace of the initial conditions -- a hump at --
may be found for any network size. We also show that there exists a natural
boundary for the observation of the scale-free networks and explain why so few
scale-free networks are observed in Nature.Comment: 4 pages revtex, 3 figure
Fine-Tuning Solution for Hybrid Inflation in Dissipative Chaotic Dynamics
We study the presence of chaotic behavior in phase space in the
pre-inflationary stage of hybrid inflation models. This is closely related to
the problem of initial conditions associated to these inflationary type of
models. We then show how an expected dissipative dynamics of fields just before
the onset of inflation can solve or ease considerably the problem of initial
conditions, driving naturally the system towards inflation. The chaotic
behavior of the corresponding dynamical system is studied by the computation of
the fractal dimension of the boundary, in phase space, separating inflationary
from non-inflationary trajectories. The fractal dimension for this boundary is
determined as a function of the dissipation coefficients appearing in the
effective equations of motion for the fields.Comment: 10 pages, 4 eps figures (uses epsf), Revtex. Replaced with version to
match one in press Physical Review
Hypothalamic S1p/s1pr1 axis controls energy homeostasis
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats5485
Anatomical and histological characteristics of teeth in agouti (Dasyprocta prymnolopha Wagler, 1831)
tartan underlies the evolution of male Drosophila genital morphology
Male genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic bases of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here, we show that divergence in clasper size and bristle number between Drosophila mauritiana and Drosophila simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell–cell interactions and affinity. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans, but differences in the expression of this gene in developing genitalia suggest that cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analyses of reciprocal hemizygotes that are genetically identical, except for the species from which the functional allele of trn originates, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore, we have identified a gene underlying evolutionary change in the size of a male genital organ, which will help to better understand not only the rapid diversification of these structures, but also the regulation and evolution of organ size more broadly
Unravelling the genetic basis for the rapid diversification of male genitalia between Drosophila species
In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species
Can we live in a self-tuning universe?
The self-tuning brane scenario is an attempt to solve the cosmological
constant problem in the context of extra dimensions. Rather than making the
vacuum energy small, this approach proceeds by removing the gravitational
effect of vacuum energy on the expansion of the universe. Such behavior is only
possible through changing the Friedmann equation of conventional cosmology, and
we discuss difficulties in obtaining cosmological evolution compatible with
observation in this context. Specific models considered include a bulk scalar
field coupling to the brane via a conformal transformation of the brane metric,
and via a rescaling of the brane volume element
Hypothalamic S1p/s1pr1 Axis Controls Energy Homeostasis
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.5Capes-12900-13-3; CAPES; Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J., Baskin, D.G., Central nervous system control of food intake (2000) Nature, 404, pp. 661-671Munzberg, H., Huo, L., Nillni, E.A., Hollenberg, A.N., Bjorbaek, C., Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin (2003) Endocrinology, 144, pp. 2121-2131Myers, M.G., Cowley, M.A., Munzberg, H., Mechanisms of leptin action and leptin resistance (2008) Annu. Rev. Physiol., 70, pp. 537-556Janoschek, R., Gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor (2006) Proc. Natl Acad. Sci. USA, 103, pp. 10707-10712Johnen, H., Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1 (2007) Nat. Med., 13, pp. 1333-1340Ropelle, E.R., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol., 8El-Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C., Flier, J.S., Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity (2000) J. Clin. Invest., 105, pp. 1827-1832Ernst, M.B., Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity (2009) J. Neurosci., 29, pp. 11582-11593Gao, Q., Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals (2007) Nat. Med., 13, pp. 89-94Ghilardi, N., Defective STAT signaling by the leptin receptor in diabetic mice (1996) Proc. Natl Acad. Sci. USA, 93, pp. 6231-6235Frias, M.A., James, R.W., Gerber-Wicht, C., Lang, U., Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: Role of sphingosine-1-phosphate (2009) Cardiovasc. Res., 82, pp. 313-323Gurgui, M., Broere, R., Kalff, J.C., Van Echten-Deckert, G., Dual action of sphingosine 1-phosphate in eliciting proinflammatory responses in primary cultured rat intestinal smooth muscle cells (2010) Cell Signal., 22, pp. 1727-1733Lee, H., STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors (2010) Nat. Med., 16, pp. 1421-1428Liang, J., Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer (2013) Cancer Cell, 23, pp. 107-120Spiegel, S., Milstien, S., The outs and the ins of sphingosine-1-phosphate in immunity (2011) Nat. Rev. Immunol., 11, pp. 403-415Spiegel, S., Milstien, S., Functions of the multifaceted family of sphingosine kinases and some close relatives (2007) J. Biol. Chem., 282, pp. 2125-2129Loh, K.C., Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway (2012) PLoS One, 7Lopez, M., Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin (2008) Cell. Metab., 7, pp. 389-399Oo, M.L., Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice (2011) J. Clin. Invest., 121, pp. 2290-2300Means, C.K., Brown, J.H., Sphingosine-1-phosphate receptor signalling in the heart (2009) Cardiovasc. Res., 82, pp. 193-200Schwartz, M.W., Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus (1997) Diabetes, 46, pp. 2119-2123Cowley, M.A., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus (2001) Nature, 411, pp. 480-484Bates, S.H., STAT3 signalling is required for leptin regulation of energy balance but not reproduction (2003) Nature, 421, pp. 856-859Mynard, V., Guignat, L., Devin-Leclerc, J., Bertagna, X., Catelli, M.G., Different mechanisms for leukemia inhibitory factor-dependent activation of two proopiomelanocortin promoter regions (2002) Endocrinology, 143, pp. 3916-3924Bousquet, C., Zatelli, M.C., Melmed, S., Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immunoneuroendocrine interfacing (2000) J. Clin. Invest., 106, pp. 1417-1425Bousquet, C., Melmed, S., Critical role for STAT3 in murine pituitary adrenocorticotropin hormone leukemia inhibitory factor signaling (1999) J. Biol. Chem., 274, pp. 10723-10730Andreux, P.A., Systems genetics of metabolism: The use of the BXD murine reference panel for multiscalar integration of traits (2012) Cell, 150, pp. 1287-1299Guissouma, H., Froidevaux, M.S., Hassani, Z., Demeneix, B.A., In vivo siRNA delivery to the mouse hypothalamus confirms distinct roles of TR beta isoforms in regulating TRH transcription (2006) Neurosci. Lett., 406, pp. 240-243Froidevaux, M.S., The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo (2006) EMBO Rep., 7, pp. 1035-1039Nagahashi, M., Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis (2012) Cancer Res., 72, pp. 726-735Brinkmann, V., Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis (2010) Nat. Rev. Drug Discov., 9, pp. 883-897Graler, M.H., Goetzl, E.J., The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors (2004) FASEB J., 18, pp. 551-553Guo, H., An activated protein C analog stimulates neuronal production by human neural progenitor cells via a PAR1-PAR3-S1PR1-Akt pathway (2013) J. Neurosci., 33, pp. 6181-6190Ishii, I., Fukushima, N., Ye, X., Chun, J., Lysophospholipid receptors: Signaling and biology (2004) Annu. Rev. Biochem., 73, pp. 321-354Walter, D.H., Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor (2007) Arterioscler. Thromb. Vasc. Biol., 27, pp. 275-282Grossberg, A.J., Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130 (2010) Endocrinology, 151, pp. 606-616Febbraio, M.A., Gp130 receptor ligands as potential therapeutic targets for obesity (2007) J. Clin. Invest., 117, pp. 841-849Samad, F., Hester, K.D., Yang, G., Hannun, Y.A., Bielawski, J., Altered adipose and plasma sphingolipid metabolism in obesity: A potential mechanism for cardiovascular and metabolic risk (2006) Diabetes, 55, pp. 2579-2587Bence, K.K., Neuronal PTP1B regulates body weight, adiposity and leptin action (2006) Nat. Med., 12, pp. 917-924Chiarreotto-Ropelle, E.C., Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats (2013) Am. J. Physiol. Endocrinol. Metab., 305, pp. E649-E659Picardi, P.K., Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats (2008) Endocrinology, 149, pp. 3870-3880Milanski, M., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity (2009) J. Neurosci., 29, pp. 359-370Purkayastha, S., Zhang, G., Cai, D., Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB (2011) Nat. Med., 17, pp. 883-887Zhang, X., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity (2008) Cell, 135, pp. 61-73Laviano, A., Meguid, M.M., Rossi-Fanelli, F., Cancer anorexia: Clinical implications, pathogenesis, and therapeutic strategies (2003) Lancet Oncol., 4, pp. 686-694Tisdale, M.J., Biology of cachexia (1997) J. Natl Cancer Inst., 89, pp. 1763-1773Pchejetski, D., Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer (2010) Breast Cancer Res. Treat., 124, pp. 543-549Ponnusamy, S., Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis (2012) EMBO Mol. Med., 4, pp. 761-775Mellon, P.L., Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis (1990) Neuron, 5, pp. 1-1
Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements
Zinc ions have key regulatory, structural, and catalytic functions and mediate a variety of intra- and intercellular processes. The hippocampal mossy fiber boutons contain large amounts of free or loosely bound vesicular zinc, which can be co-released with glutamate. Zinc can interact with a variety of ionic channels (N-VDCCs, L-VDCCs, KATP), glutamate receptors (AMPA, KA, NMDA 2A, 2B), glutamate transporters (GLAST, EAAT4), and molecules (ATP). The dynamic properties of cleft free, complexed, and total zinc were addressed, considering the known concentration and affinity of various cleft zinc sensitive sites, mainly in the postsynaptic area and in glial cells. The computer model included three different zinc release processes, with short, medium, and long duration, described, like the uptake ones, by alpha functions. The results suggest that, depending on the amount of release, zinc clearance is largely due, either, to zinc binding to NMDA 2A receptor sites or to glial GLAST transporters
- …
