7 research outputs found

    Desempenho de pontas de pulverização em Brachiaria brizantha cv. MG-4 para controle de ninfas de cigarrinhas das pastagens Spray nozzles performance in Brachiaria brizantha cv. MG-4 for pastures spittlebugs nymphs control

    No full text
    O trabalho teve como objetivo estudar o desempenho de pontas de pulverização na deposição da calda inseticida para o controle de ninfas de cigarrinhas das pastagens em Brachiaria brizantha cv. MG-4. Doze tratamentos foram estudados em esquema fatorial 6x2, constituídos pelo contraste de seis pontas de pulverização e pressões de 196 e 392 kPa: TF-VP2 (336 L ha-1 e 467 L ha-1); AI11002-VS (184 L ha-1 e 200 L ha-1); XR11002-VS (200 L ha-1 e 280 L ha-1); TT11002-VP (200 L ha-1 e 280 L ha-1); TJ60-11002VS (208 L ha-1 e 280 L ha-1) e TX-VK4 (72 L ha-1 e 97 L ha-1). Para monitorar a deposição das caldas de pulverização, utilizaram-se os traçadores Azul Brilhante FD&C-1 (0,3% p/v) e Amarelo de Tartrasina FD&C-5 (0,6% p/v). Alvos artificiais, constituídos de lâminas de vidro, foram posicionados na base das plantas, próximos à superfície do solo, e os depósitos por unidade de área das soluções pulverizadas foram quantificados por espectrofotometria. As pontas TF-VP2, XR11002-VS e AI11002-VS, nas pressões de 196 e 392 kPa, proporcionam as maiores deposições da calda de pulverização na região das espumas das cigarrinhas das pastagens, apesar de apresentarem menor uniformidade na distribuição dos depósitos em relação a TX-VK4, XR110.02-VS e TJ110.02-VS. O aumento da pressão de 196 para 392 kPa promoveu aumento na deposição da calda de pulverização sobre a Brachiaria brizantha e na região onde se encontram as espumas das cigarrinhas para todos os tipos de pontas estudadas.<br>The work aimed to study spray nozzles performance in pesticide sprayer deposition for controlling pastures spittlebugs nymphs in Brachiaria brizantha cv. MG-4 pasture. Twelve treatments were studied in factorial scheme 6x2, constituted by the contrast of six spray nozzles and 196 and 392 kPa work pressures: TF-VP2 (336 L ha-1 and 467 L ha-1); AI11002-VS (184 L ha-1 and 200 L ha-1); XR11002-VS (200 L ha-1 and 280 L ha-1); TT11002-VP (200 L ha-1 and 280 L ha¹); TJ60-11002VS (208 L ha-1 and 280 L ha-1) and TX-VK4 (72 L ha-1 and 97 L ha-1). For monitoring sprayer deposition it was used Bright Blue FD&C-1 (0.3% p/v) and Tartrasine Yellow FD&C-5 (0.6% p/v) as tracers. Artificial targets, constituted by thin glass plates were positioned on plants tillers base, near to soil surface and deposition per unit area of sprayed solutions were quantified by spectrophotometry. TF-VP2; XR11002-VS and AI11002-VS spray nozzles, in 196 and 392 kPa work pressures provided the largest sprayer deposition in the foam regions of pastures spittlebugs nymph, in spite of showing inferior uniformities of sprayer deposition in relation to TX-VK4, XR110.02-VS and TJ110.02-VS.The increase of work pressure from 196 to 392 kPa promoted the increase of sprayer deposition over Brachiaria brizantha and over the region where pastures spittlebugs foams were located for all types of spray nozzles studied

    Alkali-activated binder containing wastes: a study with rice husk ash and red ceramic

    No full text
    In addition to several positive aspects in technical properties, geopolymeric binders have considerable advantages in the environmental point of view, with lower energy consumption and lower CO2 emission. In this study, it was conducted an overview about the utilized materials by some Brazilian researchers in geopolymers production, and also an experiment employing two types of wastes (red ceramic waste and rice husk ash). The compressive strength of the resulting material developed very fast, reaching a value of 11 MPa after one day. The microstructure was evaluated by scanning electron microscopy, revealing a compact microstructure and the presence of starting materials from the red ceramic waste that not completely reacted. The results indicated the feasibility of producing geopolymeric material without using commercial sodium silicate and cured at room temperature, showing an option for building materials production with lower environmental impacts.ISSN:0366-691

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore