71 research outputs found

    Will all scientists working on snails and the diseases they transmit please stand up?

    Get PDF
    Copyright © 2012 Adema et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.No abstract available

    Orally active antischistosomal early leads identified from the open access malaria box.

    Get PDF
    BACKGROUND: Worldwide hundreds of millions of schistosomiasis patients rely on treatment with a single drug, praziquantel. Therapeutic limitations and the threat of praziquantel resistance underline the need to discover and develop next generation drugs. METHODOLOGY: We studied the antischistosomal properties of the Medicines for Malaria Venture (MMV) malaria box containing 200 diverse drug-like and 200 probe-like compounds with confirmed in vitro activity against Plasmodium falciparum. Compounds were tested against schistosomula and adult Schistosoma mansoni in vitro. Based on in vitro performance, available pharmacokinetic profiles and toxicity data, selected compounds were investigated in vivo. PRINCIPAL FINDINGS: Promising antischistosomal activity (IC50: 1.4-9.5 µM) was observed for 34 compounds against schistosomula. Three compounds presented IC50 values between 0.8 and 1.3 µM against adult S. mansoni. Two promising early leads were identified, namely a N,N'-diarylurea and a 2,3-dianilinoquinoxaline. Treatment of S. mansoni infected mice with a single oral 400 mg/kg dose of these drugs resulted in significant worm burden reductions of 52.5% and 40.8%, respectively. CONCLUSIONS/SIGNIFICANCE: The two candidates identified by investigating the MMV malaria box are characterized by good pharmacokinetic profiles, low cytotoxic potential and easy chemistry and therefore offer an excellent starting point for antischistosomal drug discovery and development

    New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel

    Get PDF
    By 2020, the global health community aims to control and eliminate human helminthiases, including schistosomiasis in selected African countries, principally by preventive chemotherapy (PCT) through mass drug administration (MDA) of anthelminthics. Quantitative monitoring of anthelminthic responses is crucial for promptly detecting changes in efficacy, potentially indicative of emerging drug resistance. Statistical models offer a powerful means to delineate and compare efficacy among individuals, among groups of individuals and among populations.; We illustrate a variety of statistical frameworks that offer different levels of inference by analysing data from nine previous studies on egg counts collected from African children before and after administration of praziquantel.; We quantify responses to praziquantel as egg reduction rates (ERRs), using different frameworks to estimate ERRs among population strata, as average responses, and within strata, as individual responses. We compare our model-based average ERRs to corresponding model-free estimates, using as reference the World Health Organization (WHO) 90 % threshold of optimal efficacy. We estimate distributions of individual responses and summarize the variation among these responses as the fraction of ERRs falling below the WHO threshold.; Generic models for evaluating responses to anthelminthics deepen our understanding of variation among populations, sub-populations and individuals. We discuss the future application of statistical modelling approaches for monitoring and evaluation of PCT programmes targeting human helminthiases in the context of the WHO 2020 control and elimination goals

    Thioredoxin Glutathione Reductase as a Novel Drug Target: Evidence from Schistosoma japonicum

    Get PDF
    Background: Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia. Methods and Findings: After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice. Conclusions: Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate Trx

    Characterization of the Phytochelatin Synthase of Schistosoma mansoni

    Get PDF
    Treatment for schistosomiasis, which is responsible for more than 280,000 deaths annually, depends exclusively on the use of praziquantel. Millions of people are treated annually with praziquantel and drug resistant parasites are likely to evolve. In order to identify novel drug targets the Schistosoma mansoni sequence databases were queried for proteins involved in glutathione metabolism. One potential target identified was phytochelatin synthase (PCS). Phytochelatins are oligopeptides synthesized enzymatically from glutathione by PCS that sequester toxic heavy metals in many organisms. However, humans do not have a PCS gene and do not synthesize phytochelatins. In this study we have characterized the PCS of S. mansoni (SmPCS). The conserved catalytic triad of cysteine-histidine-aspartate found in PCS proteins and cysteine proteases is also found in SmPCS, as are several cysteine residues thought to be involved in heavy metal binding and enzyme activation. The SmPCS open reading frame is considerably extended at both the N- and C-termini compared to PCS from other organisms. Multiple PCS transcripts are produced from the single encoded gene by alternative splicing, resulting in both mitochondrial and cytoplasmic protein variants. Expression of SmPCS in yeast increased cadmium tolerance from less than 50 µM to more than 1,000 µM. We confirmed the function of SmPCS by identifying PCs in yeast cell extracts using HPLC-mass spectrometry. SmPCS was found to be expressed in all mammalian stages of worm development investigated. Increases in SmPCS expression were seen in ex vivo worms cultured in the presence of iron, copper, cadmium, or zinc. Collectively, these results indicate that SmPCS plays an important role in schistosome response to heavy metals and that PCS is a potential drug target for schistosomiasis treatment. This is the first characterization of a PCS from a parasitic organism

    Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda

    Get PDF
    Background: A key component of schistosomiasis control is mass drug administration with praziquantel. While control interventions have been successful in several endemic regions, mass drug administration has been less effective in others. Here we focus on the impact of repeated praziquantel treatment on the population structure and genetic diversity of Schistosoma mansoni. Methods: We examined S. mansoni epidemiology, population genetics, and variation in praziquantel susceptibility in parasites isolated from children across three primary schools in a high endemicity region at the onset of the Ugandan National Control Programme. Children were sampled at 11 timepoints over two years, including one week and four weeks post-praziquantel treatment to evaluate short-term impacts on clearance and evidence of natural variation in susceptibility to praziquantel. Results: Prevalence of S. mansoni was 85% at baseline. A total of 3576 miracidia larval parasites, isolated from 203 individual children, were genotyped at seven loci. Overall, genetic diversity was high and there was low genetic differentiation, indicating high rates of parasite gene flow. Schistosome siblings were found both pre-treatment and four weeks post-treatment, demonstrating adult worms surviving treatment and natural praziquantel susceptibility variation in these populations at the beginning of mass drug administration. However, we did not find evidence for selection on these parasites. While genetic diversity decreased in the short-term (four weeks post-treatment), diversity did not decrease over the entire period despite four rounds of mass treatment. Furthermore, within-host genetic diversity was affected by host age, host sex, infection intensity and recent praziquantel treatment. Conclusions: Our findings suggest that praziquantel treatments have short-term impacts on these parasite populations but impacts were transient and no long-term reduction in genetic diversity was observed. High gene flow reduces the likelihood of local adaptation, so even though parasites surviving treatment were observed, these were likely to be diluted at the beginning of the Ugandan National Control Programme. Together, these results suggest that MDA in isolation may be insufficient to reduce schistosome populations in regions with high genetic diversity and gene flow

    IL-10 Blocks the Development of Resistance to Re-Infection with Schistosoma mansoni

    Get PDF
    Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni

    Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The <it>Schistosoma mansoni </it>genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the <it>S. mansoni </it>predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets.</p> <p>Results</p> <p>We have identified 252 ePKs, which corresponds to 1.9% of the <it>S. mansoni </it>predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that <it>S. mansoni </it>has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in <it>S. mansoni </it>or belong to an expanded family in this parasite. Only 16 <it>S. mansoni </it>ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite.</p> <p>Conclusions</p> <p>Our approach has improved the functional annotation of 40% of <it>S. mansoni </it>ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of <it>S. mansoni </it>in response to diverse environments during the parasite development, vector interaction, and host infection.</p
    corecore