288 research outputs found

    Some potential blood flow experiments for space

    Get PDF
    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations

    The Pass-Through of RIN Prices to Wholesale and Retail Fuels under the Renewable Fuel Standard

    Get PDF
    The US Renewable Fuel Standard (RFS) requires blending increasing quantities of biofuels into the surface vehicle fuel supply. The RFS requirements are met through a system of tradable permits called Renewable (fuel) Identification Numbers, or RINs. We exploit the large fluctuations in RIN prices during 2013–15 to estimate the pass-through of RIN prices to US wholesale and retail fuel prices. We control for common factors by examining spreads of physically similar fuels with different RIN obligations. Pooling six different wholesale petroleum fuel spreads, we estimate a pooled long-run or equilibrium pass-through coefficient of 1.00 with a standard error of 0.11. This pass-through occurs within two business days. The only fuel for which we find economically and statistically significant failure of pass-through is retail E85, which contains up to 83% ethanol; the pass-through of RIN prices to the retail E85–E10 spread is precisely estimated to be close to zero. Keywords: E85; Energy prices; Fuels markers; RBOB; Retail fuel spreads; Wholesale fuel spread

    Effect of Pulsed or Continuous Delivery of Salt on Sensory Perception Over Short Time Intervals

    Get PDF
    Salt in the human diet is a major risk factor for hypertension and many countries have set targets to reduce salt consumption. Technological solutions are being sought to lower the salt content of processed foods without altering their taste. In this study, the approach was to deliver salt solutions in pulses of different concentrations to determine whether a pulsed delivery profile affected sensory perception of salt. Nine different salt profiles were delivered by a Dynataste device and a trained panel assessed their saltiness using time–intensity and single-score sensory techniques. The profile duration (15 s) was designed to match eating conditions and the effects of intensity and duration of the pulses on sensory perception were investigated. Sensory results from the profiles delivered in either water or in a bouillon base were not statistically different. Maximum perceived salt intensities and the area under the time– intensity curves correlated well with the overall perceived saltiness intensity despite the stimulus being delivered as several pulses. The overall saltiness scores for profiles delivering the same overall amount of sodium were statistically not different from one another suggesting that, in this system, pulsed delivery did not enhance salt perception but the overall amount of salt delivered in each profile did affect sensory perception

    Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging.

    Get PDF
    To assess the influence of intracellular hemoglobin concentration on red cell viscoelasticity and to better understand changes related to in vivo aging, membrane shear elastic moduli (mu) and time constants for cell shape recovery (tc) were measured for age-fractionated human erythrocytes and derived ghosts. Time constants were also measured for osmotically shrunk cell fractions. Young and old cells had equal mu, but tc was longer for older cells. When young cells were shrunk to equal the volume (and hence hemoglobin concentration and internal viscosity) of old cells, tc increased only slightly. Thus membrane viscosity (eta = mu . tc) increases during aging, regardless of increased internal viscosity. However, further shrinkage of young cells, or slight shrinkage of old cells, caused a sharp increase in tc. Because this increased tc is not explainable by elevated internal viscosity, eta increased, possibly due to a concentration-dependent hemoglobin-membrane interaction. Ghosts had a greater mu than intact cells, with proportionally faster tc; their membrane viscosity was therefore similar to intact cells. However, the ratio of old/young membrane viscosity was less for ghosts than for intact cells, indicating that differences between young and old cell eta may be partly explained by altered hemoglobin-membrane interaction during aging. It is postulated that these changes in viscoelastic behavior influence in vivo survival of senescent cells

    Prediction of Individual Loudness Exponents from Cross-Modality Matching

    No full text
    • 

    corecore