139 research outputs found

    Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing

    Get PDF
    Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse measurements of spectral energy distributions in a few filters to estimate the redshift distribution of source galaxies. In this regime, sample variance, shot noise, and selection effects limit the attainable accuracy of redshift calibration and thus of cosmological constraints. We present a new method to combine wide-field, few-filter measurements with catalogs from deep fields with additional filters and sufficiently low photometric noise to break degeneracies in photometric redshifts. The multi-band deep field is used as an intermediary between wide-field observations and accurate redshifts, greatly reducing sample variance, shot noise, and selection effects. Our implementation of the method uses self-organizing maps to group galaxies into phenotypes based on their observed fluxes, and is tested using a mock DES catalog created from N-body simulations. It yields a typical uncertainty on the mean redshift in each of five tomographic bins for an idealized simulation of the DES Year 3 weak-lensing tomographic analysis of σΔz=0.007\sigma_{\Delta z} = 0.007, which is a 60% improvement compared to the Year 1 analysis. Although the implementation of the method is tailored to DES, its formalism can be applied to other large photometric surveys with a similar observing strategy.Comment: 24 pages, 11 figures; matches version accepted to MNRA

    DeepZipper: A Novel Deep-learning Architecture for Lensed Supernovae Identification

    Get PDF
    Large-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSNe in optical survey data sets, we designed ZipperNet, a multibranch deep neural network that combines convolutional layers (traditionally used for images) with long short-term memory layers (traditionally used for time series). We tested ZipperNet on the task of classifying objects from four categories—no lens, galaxy-galaxy lens, lensed Type-Ia supernova, lensed core-collapse supernova—within high-fidelity simulations of three cosmic survey data sets: the Dark Energy Survey, Rubin Observatory’s Legacy Survey of Space and Time (LSST), and a Dark Energy Spectroscopic Instrument (DESI) imaging survey. Among our results, we find that for the LSST-like data set, ZipperNet classifies LSNe with a receiver operating characteristic area under the curve of 0.97, predicts the spectroscopic type of the lensed supernovae with 79% accuracy, and demonstrates similarly high performance for LSNe 1–2 epochs after first detection. We anticipate that a model like ZipperNet, which simultaneously incorporates spatial and temporal information, can play a significant role in the rapid identification of lensed transient systems in cosmic survey experiments

    Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    Get PDF
    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ∌1014.2 M⊙\sim {10}^{14.2}\ {M}_{\odot }. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is 270−76+48{270}_{-76}^{+48} kpc, and that the inner density falls with radius to the power −0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as r−1{r}^{-1}. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as r−0.8{r}^{-0.8} and r−1.0{r}^{-1.0}) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them

    Synchronous Rotation in the (136199) Eris–Dysnomia System

    Get PDF
    We combine photometry of Eris from a 6 month campaign on the Palomar 60 inch telescope in 2015, a 1 month Hubble Space Telescope WFC3 campaign in 2018, and Dark Energy Survey data spanning 2013–2018 to determine a light curve of definitive period 15.771 ± 0.008 days (1σ formal uncertainties), with nearly sinusoidal shape and peak-to-peak flux variation of 3%. This is consistent at part-per-thousand precision with the P = 15.785 90 ± 0.00005 day sidereal period of Dysnomia's orbit around Eris, strengthening the recent detection of synchronous rotation of Eris by SzakĂĄts et al. with independent data. Photometry from Gaia are consistent with the same light curve. We detect a slope of 0.05 ± 0.01 mag per degree of Eris's brightness with respect to illumination phase averaged across g, V, and r bands, intermediate between Pluto's and Charon's values. Variations of 0.3 mag are detected in Dysnomia's brightness, plausibly consistent with a double-peaked light curve at the synchronous period. The synchronous rotation of Eris is consistent with simple tidal models initiated with a giant-impact origin of the binary, but is difficult to reconcile with gravitational capture of Dysnomia by Eris. The high albedo contrast between Eris and Dysnomia remains unexplained in the giant-impact scenario

    OzDES Reverberation Mapping Programme: Mg II lags and R−L relation

    Get PDF
    The correlation between the broad line region radius and continuum luminosity (R-L relation) of active galactic nuclei (AGNs) is critical for single-epoch mass estimates of supermassive black holes (SMBHs). At z ∌ 1-2, where AGN activity peaks, the R-L relation is constrained by the reverberation mapping (RM) lags of the Mg II line. We present 25 Mg II lags from the Australian Dark Energy Survey RM project based on 6 yr of monitoring. We define quantitative criteria to select good lag measurements and verify their reliability with simulations based on both the damped random walk stochastic model and the rescaled, resampled versions of the observed light curves of local, well-measured AGN. Our sample significantly increases the number of Mg II lags and extends the R-L relation to higher redshifts and luminosities. The relative iron line strength RFe has little impact on the R-L relation. The best-fitting Mg II R-L relation has a slope α = 0.39 ± 0.08 with an intrinsic scatter σrl = 0.15+−000203. The slope is consistent with previous measurements and shallower than the H ÎČ R-L relation. The intrinsic scatter of the new R-L relation is substantially smaller than previous studies and comparable to the intrinsic scatter of the H ÎČ R-L relation. Our new R-L relation will enable more precise single-epoch mass estimates and SMBH demographic studies at cosmic noon

    Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing

    Get PDF
    We study the effect of diffuse intracluster light on the critical surface mass density estimated from photometric redshifts of lensing source galaxies, and the resulting bias in a weak lensing measurement of galaxy cluster mass. Under conservative assumptions, we ïŹnd the bias to be negligible for imaging surveys like the Dark Energy Survey with a recommended scale cut of ≄200kpc distance from cluster centres. For signiïŹcantly deeper lensing source galaxy catalogues from present and future surveys like the Large Synoptic Survey Telescope program, more conservative scale and source magnitude cuts or a correction of the effect may be necessary to achieve percent level lensing measurement accuracy, especially at the massive end of the cluster population

    Ultracool dwarfs candidates based on 6 yr of the Dark Energy Survey data

    Get PDF
    We present a sample of 19 583 ultracool dwarf candidates brighter than z ≀23 selected from the Dark Energy Survey DR2 coadd data matched to VHS DR6, VIKING DR5, and AllWISE covering ∌ 480 deg2. The ultracool candidates were first pre-selected based on their (i–z), (z–Y), and (Y–J) colours. They were further classified using a method that compares their optical, near-infrared, and mid-infrared colours against templates of M, L, and T dwarfs. 14 099 objects are presented as new L and T candidates and the remaining objects are from the literature, including 5342 candidates from our previous work. Using this new and deeper sample of ultracool dwarf candidates we also present: 20 new candidate members to nearby young moving groups and associations, variable candidate sources and four new wide binary systems composed of two ultracool dwarfs. Finally, we also show the spectra of 12 new ultracool dwarfs discovered by our group and presented here for the first time. These spectroscopically confirmed objects are a sanity check of our selection of ultracool dwarfs and photometric classification method
    • 

    corecore