133 research outputs found

    Factors associated with preservation of facial nerve function after surgical resection of vestibular schwannoma

    Get PDF
    Avoidance of facial nerve palsy is one of the major goals of vestibular schwannoma (VS) microsurgery. In this study, we examined the significance of previously implicated prognostic factors (age, tumor size, the extent of resection and the surgical approach) on post-operative facial nerve function. We selected all VS patients from prospectively collected database (1984–2009) who underwent microsurgical resection as their initial treatment for histopathologically confirmed VS. The effect of variables such as surgical approach, tumor size, patient age and extent of resection on rates facial nerve dysfunction after surgery, were analyzed using multivariate logistic regression. Patients with preoperative facial nerve dysfunction (House-Brackman [HB] score 3 or higher) were excluded, and HB grade of 1 or 2 at the last follow-up visit was defined as “facial nerve preservation.” A total of 624 VS patients were included in this study. Multivariate logistic regression analysis found that only pre-operative tumor size significantly predicted poorer facial nerve outcome for patients followed-up for ≄6 and ≄12 months (OR 1.27, 95% CI 1.09–1.49, p < 0.01; OR 1.35, 95% CI 1.10–1.67, P < 0.01, respectively). We found no significant relationship between facial nerve function and age, extent of resection, surgical approach, or tumor size (when extent of resection and surgical approach were included in the regression analysis). Because facial nerve palsy is a debilitating and psychologically devastating condition for the patient, we suggest altering surgical aggressiveness in patients with unfavorable tumor anatomy, particularly in cases with large tumors where overaggressive resection might subject the patient to unwarranted risk. Residual disease can be followed and controlled with radiosurgery if interval growth is noted

    Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect

    Get PDF
    BACKGROUND: Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. METHODOLOGY/FINDINGS: In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. CONCLUSIONS/SIGNIFICANCE: Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect

    Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    Get PDF
    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-ÎÂșB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-ÎÂșB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value

    Factors influencing overall survival rates for patients with pineocytoma

    Get PDF
    Given its rarity, appropriate treatment for pineocytoma remains variable. As the literature primarily contains case reports or studies involving a small series of patients, prognostic factors following treatment of pineocytoma remain unclear. We therefore compiled a systematic review of the literature concerning post-treatment outcomes for pineocytoma to better determine factors associated with overall survival among patients with pineocytoma. We performed a comprehensive search of the published English language literature to identify studies containing outcome data for patients undergoing treatment for pineocytoma. Kaplan–Meier analysis was utilized to determine overall survival rates. Our systematic review identified 168 total patients reported in 64 articles. Among these patients, 21% underwent biopsy, 38% underwent subtotal resection, 42% underwent gross total resection, and 29% underwent radiation therapy, either as mono- or adjuvant therapy. The 1 and 5 year overall survival rates for patients receiving gross total resection versus subtotal resection plus radiotherapy were 91 versus 88%, and 84 versus 17%, respectively. When compared to subtotal resection alone, subtotal resection plus radiation therapy did not offer a significant improvement in overall survival. Gross total resection is the most appropriate treatment for pineocytoma. The potential benefit of conventional radiotherapy for the treatment of these lesions is unproven, and little evidence supports its use at present

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore