130 research outputs found

    Glutamate receptor-like channels are essential for chemotaxis and reproduction in mosses

    Get PDF
    The deposited article version is a "Accelerated Article Preview" provided by Nature Publishing Group, and it contains attached the supplementary materials within the pdf.». This publication hasn't any creative commons license associated.Glutamate receptors are well characterized channels that mediate cell-to-cell communication during neurotransmission in animals. Nevertheless, information regarding their functional role in organisms without nervous systems is still limited. In plants, Glutamate Receptor-like (GLR) genes have been implicated in defence against pathogens, reproduction, control of stomata aperture and light signal transduction(1-5). However, the numerous GLR genes present in angiosperm genomes (20 to 70)(6) has prevented the observation of strong phenotypes in loss-of-function mutants. Here, we show that in the moss Physcomitrella patens, a basal land plant, mutation of GLR genes cause sperm failure in targeting the female reproductive organs. In addition, we show that GLR genes encode non-selective Ca(2+) permeable channels that can regulate cytoplasmic Ca(2+) and are needed to induce the expression of a BELL1-like transcription factor essential for zygote development. Our work reveals novel functions for GLRs in sperm chemotaxis and transcriptional regulation. Sperm chemotaxis is essential for fertilization in both animals and early land plants like bryophytes and pteridophytes. Therefore, our results are suggestive that ionotropic glutamate receptors may have been conserved throughout plant evolution to mediate cell-to-cell communication during sexual reproduction.Phillips University; Oxford University; University of Marburg; University of Muenster; MarieCurie ITN-Plant Origins grant: (FP7-PEOPLE-ITN-2008); FCT grants: (BEX-BCM/0376/2012; PTDC/BIA-PLA/4018/2012); NSF-US grant: (MCB 1616437/2016).info:eu-repo/semantics/acceptedVersio

    The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer's disease

    Get PDF
    Background\ud In order to identify novel loci associated with Alzheimer's disease (AD), we conducted a genome-wide association study (GWAS) in the Spanish population.\ud \ud Methods\ud We genotyped 1,128 individuals using the Affymetrix Nsp I 250K chip. A sample of 327 sporadic AD patients and 801 controls with unknown cognitive status from the Spanish general population were included in our initial study. To increase the power of the study, we combined our results with those of four other public GWAS datasets by applying identical quality control filters and the same imputation methods, which were then analyzed with a global meta-GWAS. A replication sample with 2,200 sporadic AD patients and 2,301 controls was genotyped to confirm our GWAS findings.\ud \ud Results\ud Meta-analysis of our data and independent replication datasets allowed us to confirm a novel genome-wide significant association of AD with the membrane-spanning 4-domains subfamily A (MS4A) gene cluster (rs1562990, P = 4.40E-11, odds ratio = 0.88, 95% confidence interval 0.85 to 0.91, n = 10,181 cases and 14,341 controls).\ud \ud Conclusions\ud Our results underscore the importance of international efforts combining GWAS datasets to isolate genetic loci for complex diseases

    Prevalence of anemia and deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services provided by the Mexican Social Security Institute

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Mexico, as in other developing countries, micronutrient deficiencies are common in infants between 6 and 24 months of age and are an important public health problem. The objective of this study was to determine the prevalence of anemia and of iron, folic acid, and zinc deficiencies in Mexican children under 2 years of age who use the health care services provided by the Mexican Institute for Social Security (IMSS).</p> <p>Methods</p> <p>A nationwide survey was conducted with a representative sample of children younger than 2 years of age, beneficiaries, and users of health care services provided by IMSS through its regular regimen (located in urban populations) and its Oportunidades program (services offered in rural areas). A subsample of 4,955 clinically healthy children was studied to determine their micronutrient status. A venous blood sample was drawn to determine hemoglobin, serum ferritin, percent of transferrin saturation, zinc, and folic acid. Descriptive statistics include point estimates and 95% confidence intervals for the sample and projections for the larger population from which the sample was drawn.</p> <p>Results</p> <p>Twenty percent of children younger than 2 years of age had anemia, and 27.8% (rural) to 32.6% (urban) had iron deficiency; more than 50% of anemia was not associated with low ferritin concentrations. Iron stores were more depleted as age increased. Low serum zinc and folic acid deficiencies were 28% and 10%, respectively, in the urban areas, and 13% and 8%, respectively, in rural areas. The prevalence of simultaneous iron and zinc deficiencies was 9.2% and 2.7% in urban and rural areas. Children with anemia have higher percentages of folic acid deficiency than children with normal iron status.</p> <p>Conclusion</p> <p>Iron and zinc deficiencies constitute the principal micronutrient deficiencies in Mexican children younger than 2 years old who use the health care services provided by IMSS. Anemia not associated with low ferritin values was more prevalent than iron-deficiency anemia. The presence of micronutrient deficiencies at this early age calls for effective preventive public nutrition programs to address them.</p

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification

    Full text link
    Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape

    Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

    Get PDF
    [EN] Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham rep- resentation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is for- mulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoe- lastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and val- idated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and New- mark-b algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomag- netic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear depen- dency on temperature and some second-order interactions.This research was partially supported by grants CSD2008-00037 Canfranc Underground Physics, Polytechnic University of Valencia under programs PAID 02-11-1828 and 05-10-2674. The first author used the grant Generalitat Valenciana BEST/2014/232 for the completion of this work.PĂ©rez-Aparicio, JL.; Palma, R.; Taylor, R. (2016). Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials. Archives of Computational Methods in Engineering. 23:535-583. https://doi.org/10.1007/s11831-015-9149-9S53558323Abraham M (1910) Sull’elettrodinamica di Minkowski. Rend Circ Mat 30:33–46Allik H, Hughes TJR (1970) Finite elment method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectricsAtulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:1–15Ballato A (1995) Piezoelectricity: old effect, new thrusts. IEEE Trans Ultrason Ferroelectr Freq Control 42(5):916–926Baoyuan S, Jiantong W, Jun Z, Min Q (2003) A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory. J Mater Process Technol 139:444–447Bargmann S, Steinmann P (2005) Finite element approaches to non-classical heat conduction in solids. Comput Model Eng Sci 9(2):133–150Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196:516–527Bargmann S, Steinmann P (2008) Modeling and simulation of first and second sound in solids. Int J Solids Struct 45:6067–6073Barnett SM (2010) Resolution of the Abraham–Minkowski dilemma. Phys Rev Lett 104:070401Benbouzid MH, Meunier G, Meunier G (1995) Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans Magn 31(3):1821–1824Benbouzid MH, Reyne G, Meunier G (1993) Nonlinear finite element modelling of giant magnetostriction. IEEE Trans Magn 29(6):2467–2469Benbouzid MH, Reyne G, Meunier G (1995) Finite elment modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Trans Magn 31(3):1813–1816Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253Bisio G, Cartesegna M, Rubatto G (2001) Thermodynamic analysis of elastic systems. Energy Convers Manag 42:799–812Blun SL (1974) Materials for radiation detection. National Academy of Sciences, WashingtonBonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeBorovik-Romanov AS (1960) Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov Phys 11:786Bowyer P (2005) The momentum of light in media: the Abraham–Minkowski controversy. http://bit.ly/1M7wyATBrauer JR, Ruehl JJ, MacNeal BE, Hirtenfelder F (1995) Finite element analysis of Hall effect and magnetoresistance. IEEE Trans Electron Devices 42(2):328–333Bustamante R, Dorfmann A, Ogden RW (2009) On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int J Eng Sci 47:1131–1141Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73(11):1349–1358Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New YorkCarter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80Cattaneo C (1938) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–1013Chaplik AV (2000) Some exact solutions for the classical Hall effect in an inhomogeneous magnetic field. JETP Lett 72:503Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. J Z Angew Math Phys ZAMP 19(4):614–627Chu LJ, Haus HA, Penfield P (1966) The force density in polarizable and magnetizable fluids. In: Proceedings of the IEEEClin Th, Turenne S, Vasilevskiy D, Masut RA (2009) Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J Electron Mater 38(7):994–1001Coleman BD (1964) Thermodynamics of materials with memory. Arch Ration Mech Anal 17:1–46de Groot SR (1961) Non-equilibrium themodynamics of systems in an electromagnetic field. J Nucl Energy C Plasma Phys 2:188–194de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, MineolaDebye P (1913) On the theory of anomalous dispersion in the region of long-wave electromagnetic radiation. Verh dtsch phys Ges 15:777–793del Castillo LF, GarcĂ­a-ColĂ­n LS (1986) Thermodynamic basis for dielectric relaxation in complex materials. Phys Rev B 33(7):4944–4951Delves RT (1964) Figure of merit for Ettingshausen cooling. Br J Appl Phys 15:105–106Dorf RC (1997) The electrical engineering handbook. CRC Press, UKEarle R, Richards JFC (1956) Theophrastus: on stones. Ohio State University, ColumbusEbling D, Jaegle M, Bartel M, Jacquot A, Bottner H (2009) Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. J Electron Mater 38(7):1456–1461El-Karamany AS, Ezzat MA (2011) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226Eringen AC (1980) Mechanics of continua. Robert E Krieger, MalabarEringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New YorkErsoy Y (1984) A new nonlinear constitutive theory for conducting magnetothermoelastic solids. Int J Eng Sci 22(6):683–705Ersoy Y (1986) A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids. Int J Eng Sci 24(6):867–882Ferrari A, Mittica A (2013) Thermodynamic formulation of the constitutive equations for solids and fluids. Energy Convers Manag 66:77–86Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay JS, Bergman DJ (2005) Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semicond Sci Technol 20:286–289Gao JL, Du QG, Zhang XD, Jiang XQ (2011) Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. J Electron Mater 40(5):884–888Gaudenzi P, Bathe KJ (1995) An iterative finite element procedure for the analysis of piezoelectric continua. J Intell Mater Syst Struct 6:266–273Gavela D, PĂ©rez-Aparicio JL (1998) Peltier pellet analysis with a coupled, non-linear 3D finite element model. In: 4th European workshop on thermoelectricsGoudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall Inc, Upper Saddle RiverGros L, Reyne G, Body C, Meunier G (1998) Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators. IEEE Trans Magn 34(5):3150–3153Gurtin ME, Williams WO (1966) On the Clausius–Duhem inequality. J Z Angew Math Phys ZAMP 17(5):626–633Hamader VM, Patil TA, Chovan SH (1987) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Build Mater Sci 9:249–253Hausler C, Milde G, Balke H, Bahr HA, Gerlach G (2001) 3-D modeling of pyroelectric sensor arrays part I: multiphysics finite-element simulation. IEEE Sens J 8(12):2080–2087He Y (2004) Heat capacity, thermal conductivity and thermal expansion of barium titanate-based ceramics. Thermochimica 419:135–141HernĂĄndez-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings. Rev Mex FĂ­s 48:38–45Hinds EA (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Phys Rev Lett 102:050403Hirsinger L, Billardon R (1995) Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans Magn 31(3):1877–1880Huang MJ, Chou PK, Lin MC (2008) An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. J Therm Stress 31:438–454IEEE Standards Board (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987. doi: 10.1109/IEEESTD.1988.79638IEEE Standards Board (1991) IEEE standard on magnetostrictive materials: piezomagnetic nomenclature. IEEE Std 319-1990. doi: 10.1109/IEEESTD.1991.101048Ioffe Institute (2013) INSb—indium antimonide. Ioffe Institute. www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/index.htmlJackson JD (1962) Classical electrodynamics. Wiley, New YorkJaegle M (2008) Multiphysics simulation of thermoelectric systems—modeling of Peltier—cooling and thermoelectric generation. In: Proceedings of the COMSOLJaegle M, Bartel M, Ebling D, Jacquot A, Bottner H (2008) Multiphysics simulation of thermoelectric systems. In: European conference on thermoelectrics ECT2008JimĂ©nez JL, Campos I (1996) Advanced electromagnetism: foundations, theory and applications, chapter The balance equations of energy and momentum in classical electrodynamics. World Scientific Publishing, SingaporeJohnstone S (2008) Is there potential for use of the Hall effect in analytical science? Analyst 133:293–296Jou D, Lebon G (1996) Extended irreversible thermodynamics. Springer, BerlinKaltenbacher M, Kaltenbacher B, Hegewald T, Lerch R (2010) Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J Intell Mater Syst Struct 21:773–785Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832Kamlah M, Bohle U (2001) Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38:605–633Kannan KS, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30:983–993Klinckel S, Linnemann K (2008) A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics. Proc Appl Math Mech 8:10507–10508Kosmeier D (2013) Hornets: Gentle Giants! Wikipedia: the free encyclopedia. www.hornissenschutz.de/hornets.htmLahmer T (2008) Forward and inverse problems in piezoelectricity. PhD thesis, UniversitĂ€t Erlangen-NĂŒrnbergLandau LD, Lifshitz EM (1982) Mechanics. Butterworth-Heinemann, OxfordLandau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, OxfordLandis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628DĂ­az Lantada A (2011) Handbook of active materials for medical devices: advances and applications. CRC Press, Boca RatonLebon G, Jou D, Casas-VĂĄzquez J (2008) Understanding non-equilibrium thermodynamics. Springer, BerlinLinnemann K, Klinkel S (2006) A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc Appl Math Mech 6:393–394Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166Llebot JE, Jou D, Casas-VĂĄzquez J (1983) A thermodynamic approach to heat and electric conduction in solids. Physica 121(A):552–562Lu X, Hanagud V (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1582–1592Lubarda VA (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41:7377–7398Mansuripur M (2012) Trouble with the lorentz law of force: incompatibility with special relativity and momentum conservation. Phys Rev Lett 108:193901Maruszewski B, Lebon G (1986) An extended irreversible thermodynamic description of electrothermoelastic semiconductors. Int J Eng Sci 24(4):583–593McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590McMeeking RM, Landis CM, Jimenez MA (2007) A principle of virtual work for combined electrostatic and mechanical loading of materials. Int J Non Linear Mech 42:831–838MELCOR (2000) Thermoelectric handbook. Melcor, a unit of Laird Technologies. http://www.lairdtech.comMinkowski H (1908) Nachr. ges. wiss. Gottingen 53Naranjo B, Gimzewski JK, Putterman S (2005) Observation of nuclear fusion driven by a pyroelectric crystal. Nature 28(434):1115–1117NĂ©dĂ©lec JC (1980) Mixed finite elements in R3{R}^3 R 3 . Numer Math 35:314–345Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part I. approaches and scalar rate processes. J Non-Equilib Thermodyn 20:205–229Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part II. vector transport processes, shear relaxation and rheology. J Non-Equilib Thermodyn 20:297–331Nettleton RE, Sobolev SL (1996) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part III. wave phenomena. J Non-Equilib Thermodyn 21:1–16Newmark N (1959) A method of computation for structural dynamics. ASCE J Eng Mech 85:67–94Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, OxfordNour AE, Abd-Alla N, Maugin GA (1990) Nonlinear equations for thermoelastic magnetizable conductors. Int J Eng Sci 27(7):589–603Nowacki A (1962) International series of monographs in aeronautics and astronautics. Pergamon Press, OxfordOkumura H, Hasegawa Y, Nakamura H, Yamaguchi S (1999) A computational model of thermoelectric and thermomagnetic semiconductors. In: 18th international conference on thermoelectricsOkumura H, Yamaguchi S, Nakamura H, Ikeda K, Sawada K (1998) Numerical computation of thermoelectric and thermomagnetic effects. In: 17th international conference on thermoelectricsOliver X, Agelet C (2000) Continuum mechanics for engineers. Edicions UPC, Barcelona. http://hdl.handle.net/2099.3/36197Shankar K, Kondaiah P, Ganesan N (2013) Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature. Smart Mater Struct 22(2):025007Palma R, PĂ©rez-Aparicio JL, Bravo R (2013) Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems. Energy Convers Manag 65:557–563Palma R, PĂ©rez-Aparicio JL, Taylor RL (2012) Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput Method Appl Mech Eng 213–216:93–103Palma R, Rus G, Gallego R (2009) Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mech Mater 41:1000–1016PĂ©rez-Aparicio JL, Gavela D (1998) 3D, non-linear coupled, finite element model of thermoelectricity. In: 4th European workshop on thermoelectricsPĂ©rez-Aparicio JL, Palma R, Taylor RL (2012) Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Transf 55:1363–1374PĂ©rez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908PĂ©rez-Aparicio JL, Taylor RL, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mech 40:35–45Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290PĂ©rez-Aparicio JL, Palma R, Abouali-SĂĄnchez S (2014) Complete finite element method analysis of galvanomagnetic and thermomagnetic effects. Appl Therm Eng (submitted)Perez-Aparicio JL, Palma R, Moreno-Navarro P (2014) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng (submitted)RamĂ­rez F, Heyliger PR, Pan E (2006) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib 292:626–644Reitz JR, Milford FJ (1960) Foundations of electromagnetic theory. Addison-Wesley, BostonReng Z, Ionescu B, Besbes M, Razek A (1995) Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Trans Magn 31(3):1873–1876Restuccia L (2010) On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J Non-Equilib Thermodyn 35:379–413Restuccia L, Kluitenberg GA (1988) On generalizations of the Debye equation for dielectric relaxation. Phys A 154:157–182Restuccia L, Kluitenberg GA (1992) On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int J Eng Sci 30(3):305–315Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC Press, UKRus G, Palma R, PĂ©rez-Aparicio JL (2009) Optimal measurement setup for damage detection in piezoelectric plates. Int J Eng Sci 47:554–572Rus G, Palma R, PĂ©rez-Aparicio JL (2012) Experimental design of dynamic model-based damage identification in piezoelectric ceramics. Mech Syst Signal Process 26:268–293Sadiku MNO (2001) Numerical techniques in electromagnetics. CRC Press LLC, Boca RatonSemenov AS, Kessler H, Liskowsky A, Balke H (2006) On a vector potential formulation for 3D electromechanical finite element analysis. Commun Numer Methods Eng 22:357–375Serra E, Bonaldi M (2008) A finite element formulation for thermoelastic damping analysis. Int J Numer Methods Eng 78(6):671–691Several. Wikipedia. Wikipedia: The Free Encyclopedia, SeveralSoh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16:597–602Stefanescu DM (2011) Handbook of force transducers: principles and components. Springer, BerlinTamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9:73–84Tang T, Yu W (2009) Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater Struct 18:1–14Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley. http://www.ce.berkeley.edu/feapThurston RN (1994) Warren p. Mason (1900–1986) physicist, engineer, inventor, author, teacher. IEEE Trans Ultrason Ferroelectr Freq Control 41(4):425–434Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063Tinder RF (2008) Tensor properties of solids: phenomenological development of the tensor properties of crystals. Morgan and Claypool, San RafaelTruesdell C (1968) Thermodynamics for beginners, in irreversible aspects of continuum mechanics. Springer, BerlinTzou HS, Ye R (1996) Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech Syst Signal Process 10(4):459–469Walser R (1972) Application of pyromagnetic phenomena to radiation detection

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa
    • 

    corecore