55 research outputs found

    Bacillus species at the Canberra Airport: A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification

    Full text link
    © 2018 Elsevier B.V. Anthrax, caused by the Gram-positive, spore forming bacterium Bacillus anthracis, is a disease with naturally occurring outbreaks in many parts of the world, primarily in domestic and wild herbivores. Due to the movement of people and stock, B. anthracis could, however, be at transportation hubs including airports. The continuous threat to national and international security from a biological agent release, or hoax attack, is a very real concern. Sensitive, robust and rapid (hours-day) methods to identify biological agents, including B. anthracis, and distinguish pathogenic from non-pathogenic species, is an essential cornerstone to national security. The aim of this project was to determine the presence of Bacillus species at the Canberra Airport using two massively parallel sequencing (MPS) approaches and compare with previous results using real-time polymerase chain reaction (qPCR). Samples were collected daily for seven days each month from August 2011–July 2012 targeting movement of people, luggage and freight into and out of the Canberra Airport. Extracted DNA was analysed using qPCR specific for B. anthracis. A subset of samples was analysed using two MPS approaches. Approach one, using the Ion PGM™ (Thermo Fisher Scientific; TFS) and an in-house assay, targeted the two B. anthracis virulence plasmids (cya and capB genes) and a single conserved region of the 16S rRNA gene. Approach two, using the Ion S5™ (TFS) and the commercial Ion 16S™ Metagenomics Kit (TFS), targeted multiple regions within the bacterial 16S rRNA gene. Overall there was consistency between the two MPS approaches and between MPS and qPCR, however, MPS was more sensitive, particularly for plasmid detection. Whilst the broad-range 16S genomic target(s) used in both MPS approaches in this study was able to generate a metagenomic fingerprint of the bacterial community at the Canberra Airport, it could not resolve Bacillus species beyond the level of the Bacillus cereus group. The inclusion of B. anthracis virulence plasmid targets in the in-house assay did allow for the potential presumptive identifications of pathogenic species. No plasmid targets were in the Ion 16S™ Metagenomics Kit. This study shows the choice of target(s) is key in MPS assay development and should be carefully considered to ensure the assay is fit for purpose, whether as an initial screening (presumptive) or a more specific (but not entirely confirmatory) test. Identification approaches may also benefit from a combination of MPS and qPCR as each has benefits and limitations

    Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin Aâ‚„ Mimetics (QNX-sLXms)

    Get PDF
    Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure–activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators

    Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A4 Mimetics (QNX-sLXms)

    Get PDF
    Failure to resolve inflammation underlies many prevalent pathologies. Recent insights have identified lipid mediators, typified by lipoxins (LXs), as drivers of inflammation resolution, suggesting potential therapeutic benefit. We report the asymmetric preparation of novel quinoxaline-containing syntheticLXA4-mimetics (QNX-sLXms). Eight novel compounds were screened for their impact on inflammatory responses. Structure− activity relationship (SAR) studies showed that (R)-6 (also referred to as AT-02-CT) was the most efficacious and potent anti-inflammatory compound of those tested. (R)-6 significantly attenuated lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and vascular smooth muscle cells. The molecular target of (R)-6 was investigated. (R)-6 activated the endogenous LX receptor formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent with in vitro observations, (R)-6 attenuated inflammatory responses. These results support the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators

    A Strategy for the Proliferation of Ulva prolifera, Main Causative Species of Green Tides, with Formation of Sporangia by Fragmentation

    Get PDF
    Ulva prolifera, a common green seaweed, is one of the causative species of green tides that occurred frequently along the shores of Qingdao in 2008 and had detrimental effects on the preparations for the 2008 Beijing Olympic Games sailing competition, since more than 30 percent of the area of the games was invaded. In view of the rapid accumulation of the vast biomass of floating U. prolifera in green tides, we investigated the formation of sporangia in disks of different diameters excised from U. prolifera, changes of the photosynthetic properties of cells during sporangia formation, and development of spores. The results suggested that disks less than 1.00 mm in diameter were optimal for the formation of sporangia, but there was a small amount of spore release in these. The highest percentage of area of spore release occurred in disks that were 2.50 mm in diameter. In contrast, sporangia were formed only at the cut edges of larger disks (3.00 mm, 3.50 mm, and 4.00 mm in diameter). Additionally, the majority of spores liberated from the disks appeared vigorous and developed successfully into new individuals. These results implied that fragments of the appropriate size from the U. prolifera thalli broken by a variety of factors via producing spores gave rise to the rapid proliferation of the seaweed under field conditions, which may be one of the most important factors to the rapid accumulation of the vast biomass of U. prolifera in the green tide that occurred in Qingdao, 2008

    Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer

    Get PDF
    Citrullinated histone H3 (H3Cit) is a central player in the neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs). NETs have been shown to elicit harmful effects on the host, and were recently proposed to promote tumor progression and spread. Here we report significant elevations of plasma H3Cit in patients with advanced cancer compared with age-matched healthy individuals. These elevations were specific to cancer patients as no increase was observed in severely ill and hospitalized patients with a higher non-malignant comorbidity. The analysis of neutrophils from cancer patients showed a higher proportion of neutrophils positive for intracellular H3Cit compared to severely ill patients. Moreover, the presence of plasma H3Cit in cancer patients strongly correlated with neutrophil activation markers neutrophil elastase (NE) and myeloperoxidase (MPO), and the inflammatory cytokines interleukin-6 and -8, known to induce NETosis. In addition, we show that high levels of circulating H3Cit strongly predicted poor clinical outcome in our cohort of cancer patients with a 2-fold increased risk for short-term mortality. Our results also corroborate the association of NE, interleukin-6 and -8 with poor clinical outcome. Taken together, our results are the first to unveil H3Cit as a potential diagnostic and prognostic blood marker associated with an exacerbated inflammatory response in patients with advanced cancer

    Degradation of nuclear and mitochondrial DNA after γ-irradiation and its effect on forensic genotyping.

    Full text link
    Forensic genotyping can be impeded by γ-irradiation of biological evidence in the event of radiological crime; that is, criminal activity involving radioactive material. Oxidative effects within the mitochondria of living cells elicits greater damage to mitochondrial DNA (mtDNA) than nuclear DNA (nuDNA) at low doses. This study presents a novel approach for the assessment of nuDNA versus mtDNA damage from a comparison of genotype and quantity data, while exploring likely mechanisms for differential damage after high doses of γ-irradiation. Liquid (hydrated) and dried (dehydrated) whole blood samples were exposed to high doses of γ-radiation (1-50 kilogray, kGy). The GlobalFiler PCR Amplification Kit was used to evaluate short tandem repeat (STR) genotyping efficacy and nuDNA degradation; a comparison was made to mtDNA degradation measured using real-time PCR assays. Each assay was normalized before comparison by calculation of integrity indices relative to unirradiated controls. Full STR profiles were attainable up to the highest dose, although DNA degradation was noticeable after 10 and 25 kGy for hydrated and dehydrated blood, respectively. This was manifested by heterozygote imbalance more than allele dropout. Degradation was greater for mtDNA than nuDNA, as well as for hydrated than dehydrated cells, after equivalent doses. Oxidative effects due to water radiolysis and mitochondrial function are dominant mechanisms of differential damage to nuDNA versus mtDNA after high-dose γ-irradiation. While differential DNA damage was reduced by cell desiccation, its persistence after drying indicates innate differences between nuDNA and mtDNA radioresistance and/or continued oxidative effects within the mitochondria

    Prediction of biogeographical ancestry in admixed individuals.

    Full text link
    Estimation of ancestral affiliation for human genotypes is now possible for major geographic populations and has been employed for forensic casework. Prediction algorithms, such as the Snipper Bayesian classifier, have the ability to classify non-admixed BGA in African (AFR), European (EUR), East Asian (EAS), and most Amerindian (NAM) individuals, but are not always appropriate for admixed individuals. Artificial admixture was simulated for all possible admixture ratios (1:1, 3:1, 2:1:1, and 1:1:1:1) from four grandparents. The simulated genotypes were used to test the accuracy of various prediction algorithms, most successful of which were the population genetics program, STRUCTURE, and a novel genetic distance algorithm (GDA). STRUCTURE was ideal for admixed individuals with 1:1 and 3:1 ratios from AFR, EUR, EAS, and NAM reference populations. Individuals with 1:1:1:1 BGA proportions were more accurately predicted by GDA. The use of hypothetical root genotypes improved the accuracy of GDA predictions for 1:1 and 3:1 admixtures and STRUCTURE classification of 1:1:1:1 admixture. The GDA requires only allele or genotype frequency values from each reference population, which offers a simpler sampling and input formatting procedure than is required by STRUCTURE. It can also be implemented in a spreadsheet without the need for long run times
    • …
    corecore