264 research outputs found

    Basal cutaneous pain threshold in headache patients

    Get PDF
    The aim of this study was to analyze cutaneous pain threshold (CPT) during the interictal phase in headache patients, and the relationships between headache frequency and analgesic use. A consecutive series of 98 headache patients and 26 sex- and age-balanced controls were evaluated. Acute allodynia (AA) was assessed by Jakubowski questionnaire, and interictal allodynia (IA) by a skin test with calibrated monofilaments. AA is widely known as a symptom more present in migraine than in TTH spectrum: in our study this was confirmed only in cases of episodic attacks. When headache index rises towards chronicization, the prevalence of AA increases in both headache spectrums (χ2 13.55; p < 0.01). AA was associated with IA only in cases of chronic headache. When headache becomes chronic, mostly in presence of medication overuse, interictal CPT decreases and IA prevalence increases (χ2 20.44; p < 0.01), with closer association than AA. In MOH patients there were no significant differences depending on the diagnosis of starting headache (migraine or tension type headache) and, in both groups, we found the overuse of analgesics plays an important role: intake of more than one daily drug dramatically reduces the CPT (p < 0.05). Thus, when acute allodynia increases frequency, worsens or appears for the first time in patients with a long-standing history of chronic headache, it could reasonably suggest that the reduction of CPT had started, without using a specific practical skin test but simply by questioning clinical headache history. In conclusion, these results indicate that the role of medication overuse is more important than chronicization in lowering CPT, and suggest that prolonged periods of medication overuse can interfere with pain perception by a reduction of the pain threshold that facilitates the onset of every new attack leading to chronicization

    Chronic migraine classification: current knowledge and future perspectives

    Get PDF
    In the field of so-called chronic daily headache, it is not easy for migraine that worsens progressively until it becomes daily or almost daily to find a precise and universally recognized place within the current international headache classification systems. In line with the 2006 revision of the second edition of the International Classification of Headache Disorders (ICHD-2R), the current prevailing opinion is that this headache type should be named chronic migraine (CM) and be characterized by the presence of at least 15 days of headache per month for at least 3 consecutive months, with headache having the same clinical features of migraine without aura for at least 8 of those 15 days. Based on much evidence, though, a CM with the above characteristics appears to be a heterogeneous entity and the obvious risk is that its definition may be extended to include a variety of different clinical entities. A proposal is advanced to consider CM a subtype of migraine without aura that is characterized by a high frequency of attacks (10–20 days of headache per month for at least 3 months) and is distinct from transformed migraine (TM), which in turn should be included in the classification as a complication of migraine. Therefore, CM should be removed from its current coding position in the ICHD-2 and be replaced by TM, which has more restrictive diagnostic criteria (at least 20 days of headache per month for at least 1 year, with no more than 5 consecutive days free of symptoms; same clinical features of migraine without aura for at least 10 of those 20 days)

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.</p> <p>Results</p> <p>We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information).</p> <p>Conclusions</p> <p>The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.</p

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons

    Get PDF
    Emerging evidence supports an important role for the ROS-sensitive TRPM2 channel in mediating age-related cognitive impairment in Alzheimer’s disease (AD), particularly neurotoxicity resulting from generation of excessive neurotoxic Aβ peptides. Here we examined the elusive mechanisms by which Aβ₄₂ activates the TRPM2 channel to induce neurotoxicity in mouse hippocampal neurons. Aβ₄₂-induced neurotoxicity was ablated by genetic knockout (TRPM2-KO) and attenuated by inhibition of the TRPM2 channel activity or activation through PARP-1. Aβ₄₂-induced neurotoxicity was also inhibited by treatment with TPEN used as a Zn²⁺-specific chelator. Cell imaging revealed that Aβ₄₂-induced lysosomal dysfunction, cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS. These effects were suppressed by TRPM2-KO, inhibition of TRPM2 or PARP-1, or treatment with TPEN. Bafilomycin-induced lysosomal dysfunction also resulted in TRPM2-dependent cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, and mitochondrial generation of ROS, supporting that lysosomal dysfunction and accompanying Zn²⁺ release trigger mitochondrial Zn²⁺ accumulation and generation of ROS. Aβ₄₂-induced effects on lysosomal and mitochondrial functions besides neurotoxicity were also suppressed by inhibition of PKC and NOX. Furthermore, Aβ₄₂-induced neurotoxicity was prevented by inhibition of MEK/ERK. Therefore, our study reveals multiple molecular mechanisms, including PKC/NOX-mediated generation of ROS, activation of MEK/ERK and PARP-1, lysosomal dysfunction and Zn²⁺ release, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS, are critically engaged in forming a positive feedback loop that drives Aβ₄₂-induced activation of the TRPM2 channel and neurotoxicity in hippocampal neurons. These findings shed novel and mechanistic insights into AD pathogenesis

    Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (Abeta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD.In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer.These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology
    corecore