162 research outputs found

    High Yield Production Process for Shigella Outer Membrane Particles

    Get PDF
    Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria

    An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2−/− γc−/− mouse

    Get PDF
    The occurrence of metastases is a critical determinant of the prognosis for breast cancer patients. Effective treatment of breast cancer metastases is hampered by a poor understanding of the mechanisms involved in the formation of these secondary tumor deposits. To study the processes of metastasis, valid in vivo tumor metastasis models are required. Here, we show that increased expression of the EGF receptor in the MTLn3 rat mammary tumor cell-line is essential for efficient lung metastasis formation in the Rag mouse model. EGFR expression resulted in delayed orthotopic tumor growth but at the same time strongly enhanced intravasation and lung metastasis. Previously, we demonstrated the critical role of NK cells in a lung metastasis model using MTLn3 cells in syngenic F344 rats. However, this model is incompatible with human EGFR. Using the highly metastatic EGFR-overexpressing MTLn3 cell-line, we report that only Rag2−/−γc−/− mice, which lack NK cells, allow efficient lung metastasis from primary tumors in the mammary gland. In contrast, in nude and SCID mice, the remaining innate immune cells reduce MTLn3 lung metastasis formation. Furthermore, we confirm this finding with the orthotopic transplantation of the 4T1 mouse mammary tumor cell-line. Thus, we have established an improved in vivo model using a Rag2−/− γc−/− mouse strain together with MTLn3 cells that have increased levels of the EGF receptor, which enables us to study EGFR-dependent tumor cell autonomous mechanisms underlying lung metastasis formation. This improved model can be used for drug target validation and development of new therapeutic strategies against breast cancer metastasis formation

    Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria

    Get PDF
    Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIR) and human leukocyte antigens (HLA). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIR and HLA in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIR and HLA so far associated with immunity to malaria.This work was supported through the DELTAS Africa Initiative (Grant no. 107743), that funded Stephen Tukwasibwe through PhD fellowship award, and Annettee Nakimuli through group leader award. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Science (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust (Grant no. 107743) and the UK government. Francesco Colucci is funded by Wellcome Trust grant 200841/Z/16/Z. The project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 695551) for James Traherne and John Trowsdale. Jyothi Jayaraman is a recipient of fellowship from the Centre for Trophoblast Research

    Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Get PDF
    BACKGROUND: This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). METHODS: In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. RESULTS: Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. CONCLUSIONS: Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife

    Knowledge, attitudes, beliefs and practices of construction workers towards tetanus vaccine in Northern Italy

    No full text
    Construction workers (CWs) are both more exposed to tetanus and at higher risk to be inadequately immunized. Our aim was to evaluate tetanus immunization status and knowledge/attitudes towards tetanus vaccination in CWs in Italy. In this field report, the immunization status of 554 unskilled CWs (i.e. labourers). Immunization status was assessed recalling immunization booklets/certificates. Attitudes and knowledge were collected through a standardized questionnaire. In 240/554 CWs, immunization status was inadequate/not documented: in 184 subjects (33.2%), the last vaccination shot was older than 10 years, whereas basal immunization was incomplete in 20 cases, more frequently in foreign-born people (FBP) than in Italian born (IBP) (OR=7.116). In 198 cases (35.7%), an Occupational Physician (OPh) performed last booster, usually with monovalent (T, n=173) vaccine. The main reason for inadequate immunization was having forgotten the periodic booster (148/554; 26.7%), whereas 42 subjects (7.6%) deliberately avoided tetanus vaccine because of personal/religious beliefs, more frequently in FBP than in IBP (OR=3.182). In summary, the prevalence of inadequate immunization status was relatively high (43.4%): the high prevalence of \"forgotten boosters\" enlightens the key role of OPh in recalling and promoting vaccination policies. Moreover, the inappropriate use of Td vaccine points out the opportunity for educational campaigns in OPh
    corecore