57 research outputs found

    Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the Spiromax® and Turbuhaler® devices: a randomised, cross-over study.

    Get PDF
    BACKGROUND: Spiromax® is a novel dry-powder inhaler containing formulations of budesonide plus formoterol (BF). The device is intended to provide dose equivalence with enhanced user-friendliness compared to BF Turbuhaler® in asthma and chronic obstructive pulmonary disease (COPD). The present study was performed to compare inhalation parameters with empty versions of the two devices, and to investigate the effects of enhanced training designed to encourage faster inhalation. METHODS: This randomised, open-label, cross-over study included children with asthma (n = 23), adolescents with asthma (n = 27), adults with asthma (n = 50), adults with COPD (n = 50) and healthy adult volunteers (n = 50). Inhalation manoeuvres were recorded with each device after training with the patient information leaflet (PIL) and after enhanced training using an In-Check Dial device. RESULTS: After PIL training, peak inspiratory flow (PIF), maximum change in pressure (∆P) and the inhalation volume (IV) were significantly higher with Spiromax than with the Turbuhaler device (p values were at least <0.05 in all patient groups). After enhanced training, numerically or significantly higher values for PIF, ∆P, IV and acceleration remained with Spiromax versus Turbuhaler, except for ∆P in COPD patients. After PIL training, one adult asthma patient and one COPD patient inhaled <30 L/min through the Spiromax compared to one adult asthma patient and five COPD patients with the Turbuhaler. All patients achieved PIF values of at least 30 L/min after enhanced training. CONCLUSIONS: The two inhalers have similar resistance so inhalation flows and pressure changes would be expected to be similar. The higher flow-related values noted for Spiromax versus Turbuhaler after PIL training suggest that Spiromax might have human factor advantages in real-world use. After enhanced training, the flow-related differences between devices persisted; increased flow rates were achieved with both devices, and all patients achieved the minimal flow required for adequate drug delivery. Enhanced training could be useful, especially in COPD patients

    Decline in age at menarche among Spanish women born from 1925 to 1962

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the timing of reproductive events varies across populations, a downward trend in age at menarche has nevertheless been reported in most of the developed world over the past century. Given the impact of change in age at menarche on health conditions, this study sought to examine secular trends in age at menarche among women living in Navarre (Northern Spain) who participated in a population-based breast cancer screening programme.</p> <p>Methods</p> <p>The study was based on 110545 women born from 1925 to 1962. Trends were tested using a linear regression model, in which year of birth was entered continuously as the predictor and age at menarche (years) as the response variable, using size of town and region of birth as covariates.</p> <p>Results</p> <p>Among women born in Navarre between 1925 and 1962, age at menarche declined steadily from an average of 13.72 years in the 1925-1929 birth-cohorts to 12.83 years in the 1958-1962 birth-cohorts. Controlling for size of town or city of birth, age at menarche declined by an average of 0.132 years every 5 years over the period 1925-1962. This decline was greater in women born in rural versus urban settings. Trends were also different among regions of birth.</p> <p>Conclusion</p> <p>We report a population-based study showing a downward trend in age of onset of menarche among Spanish women born in the period 1925-1962, something that is more pronounced among women born in rural settings and varies geographically.</p

    The Study of Irregular Migration

    Get PDF
    AbstractThe study of irregular migration as a specific social phenomenon took off during the 70s in the US. Since then, the academic interest has continually grown and spread, first to Europe and, in the last years, to other regions worldwide. This interest can certainly be related to the increasing attention paid to the study of migrations more in general (Castles & Miller, 1993). The trend can be linked to those broad and complex social and economic changes, often subsumed under the concept of globalization. The specific focus on irregular migration, though gaining momentum throughout the 1980s, reached preeminent attention in the 1990s. On both sides of the Atlantic, the explosion of the so-called "migration crisis" (Zolberg & Benda, 2001) and the emergence of irregular migration as a widespread social fact raised the attention of public opinion and academics alike. Moreover, in recent years, what seemed at first to be an issue concerning only the high-income regions of the planet, now involves also medium and low-income ones, making irregular migration a truly global structural phenomenon (Cvajner & Sciortino, 2010a; Düvell, 2006)

    Clarifying the dilemmas about inhalation techniques for dry powder inhalers: integrating science with clinical practice

    No full text
    This review integrates pharmaceutical science with routine clinical practice to explain why inhalation manoeuvres through a dry powder inhaler (DPI) should start with a gentle exhalation, away from the inhaler. Place the inhaler in the mouth and ensure the lips form a tight seal. This should be followed by an immediate forceful inhalation that is as fast as possible and continued for as long as the patient can comfortably achieve. Although this is universally accepted, there has been a lot of attention on inhalation flow as an indicator of adequate inspiratory effort. This has led to the wrong assumption that inhalation flows through each DPI should be the same, and that low flows through some DPIs suggest that dose delivery is impaired. Most miss the concept that inhalation flow together with the resistance of the DPI combine to create a turbulent energy which de-aggregates the formulation and provides an effective emitted dose. A low flow through a DPI with high resistance generates the same turbulent energy as fast flow with low resistance. Therefore, depending on the device, different inhalation flows are compatible with potentially effective use. Flow measurements should be a guide to train patients to inhale faster. The focus of inhaler technique training should be the use of the above generic inhalation manoeuvre

    Quantifying the duration of the preclinical detectable phase in cancer screening: a systematic review

    No full text
    Objectives: To provide an overview of published mathematical estimation approaches to quantify the duration of the preclinical detectable phase using data from cancer screening programs. Methods: A systematic search in PubMed and Embase for original studies presenting mathematical approaches using screening data. The studies were categorized by mathematical approach, data source and assumptions made. Furthermore, estimates of the duration of the preclinical detectable phase of breast and colorectal cancer were reported per study population. Results: From 689 publications, 34 estimation methods were included. Five distinct types of mathematical estimation approaches were identified: prevalence to incidence ratio (n=8), maximum likelihood estimation (n=16), expectation-maximization algorithm (n=1), regression of observed on expected (n=6) and Bayesian Markov Chain Monte Carlo estimation (n=5). Fourteen studies used data of a screened and an unscreened population whereas nineteen studies included only information from a screened population. Estimates of the duration of the preclinical detectable phase varied between two and seven years for breast cancer within the HIP study (annual mammography and clinical breast examination in women aged 40-64 years) and two and five years for colorectal cancer within the Calvados study (one guaiac fecal occult blood test in men and women aged 45-74 years). Conclusion: Different types of mathematical approaches lead to different estimates of the duration of preclinical detectable phase. We advise researchers to use the method that matches the data available, and use multiple methods for estimation when possible as no method is perfect
    • …
    corecore