463 research outputs found

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Malaria parasites regulate the duration of the intra-erythrocytic cycle via serpentine receptor 10 and coordinate development with host daily rhythms

    Get PDF
    Malaria parasites complete their intra-erythrocytic developmental cycle (IDC) in multiples of 24 h suggesting a circadian basis, but the mechanism controlling this periodicity is unknown. Combining in vivo and in vitro approaches utilizing rodent and human malaria parasites, we reveal that: (i) 57% of Plasmodium chabaudi genes exhibit daily rhythms in transcription; (ii) 58% of these genes lose transcriptional rhythmicity when the IDC is out-of-synchrony with host rhythms; (iii) 6% of Plasmodium falciparum genes show 24 h rhythms in expression under free-running conditions; (iv) Serpentine receptor 10 (SR10) has a 24 h transcriptional rhythm and disrupting it in rodent malaria parasites shortens the IDC by 2-3 h; (v) Multiple processes including DNA replication, and the ubiquitin and proteasome pathways, are affected by loss of coordination with host rhythms and by disruption of SR10. Our results reveal malaria parasites are at least partly responsible for scheduling the IDC and coordinating their development with host daily rhythms

    Preventive evidence into practice (PEP) study: implementation of guidelines to prevent primary vascular disease in general practice protocol for a cluster randomised controlled trial

    Get PDF
    There are significant gaps in the implementation and uptake of evidence-based guideline recommendations for cardiovascular disease (CVD) and diabetes in Australian general practice. This study protocol describes the methodology for a cluster randomised trial to evaluate the effectiveness of a model that aims to improve the implementation of these guidelines in Australian general practice developed by a collaboration between researchers, non-government organisations, and the profession.This study is funded by an Australian National Health and Medical Research Council (NHMRC) Partnership grant (ID 568978) together with the Australian National Heart Foundation, Royal Australian College of General Practitioners, and the BUPA Foundation. MH is supported by a NHMRC Senior Principle Research Fellowship

    Cognitive ability, parental socioeconomic position and internalising and externalising problems in adolescence: Findings from two European cohort studies

    Get PDF
    We investigated whether cognitive ability (CA) may be a moderator of the relationship of parental socioeconomic position (SEP) with internalising and externalising problems in adolescents. We used data from two longitudinal cohort studies; the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Tracking Adolescents’ Individual Lives Survey (TRAILS). Indicators of SEP were mother’s education and household income. CA was estimated with IQ scores, derived from the Wechsler Intelligence Scale for Children. Internalising and externalising problems were measured with the Strengths and Difficulties Questionnaire in ALSPAC and with the Child Behavior Checklist in TRAILS. Logistic regression analyses were used to estimate the relative index of inequality (RII) for each outcome; the RII provides the odds ratio comparing the most to least deprived for each measure of SEP. In fully adjusted models an association of mother’s education with externalising problems was observed [ALSPAC RII 1.42 (95%CI: 1.01–1.99); TRAILS RII 2.21 (95%CI: 1.37–3.54)], and of household income with internalising and externalising problems [pooled ALSPAC & TRAILS internalising RII 1.30 (95%CI: 0.99–1.71); pooled ALSPAC & TRAILS externalising RII 1.38 (95%CI: 1.03–1.84)]. No consistent associations were observed between mother’s education and internalising problems. Results of stratified analyses and interaction-terms showed no evidence that CA moderated the association of SEP with internalising or externalising problems

    A highly mutagenised barley (cv. Golden Promise) TILLING population coupled with strategies for screening-by-sequencing

    Get PDF
    Background:We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates. Results:Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations. Conclusions:We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.Miriam Schreiber, Abdellah Barakate, Nicola Uzrek, Malcolm Macaulay, Adeline Sourdille, Jenny Morris, Pete E. Hedley, Luke Ramsay and Robbie Waug

    Female gamers’ experience of online harassment and social support in online gaming: a qualitative study

    Get PDF
    Female gaming is a relatively under-researched area, and female gamers often report experiencing harassment whilst playing online. The present study explored female experiences of social support while playing online video games, because of the previous research suggesting that females often experience harassment and negative interactions during game play. Data were collected from an online discussion forum, and comprised posts drawn from 271 female gamers. Thematic analysis of the discussions suggested that a lack of social support and harassment frequently led to female gamers playing alone, playing anonymously, and moving groups regularly. The female gamers reported experiencing anxiety and loneliness due to this lack of social support, and for many, this was mirrored in their experiences of social support outside of gaming. The female gamers frequently accepted the incorporation into their gaming of specific coping strategies to mitigate online harassment, including actively hiding their identity and avoiding all forms of verbal communication with other players. These themes are discussed in relation to relevant research in the area, along with recommendations for future research and consideration of possible explanations for the themes observed

    Radical genome remodelling accompanied the emergence of a novel host-restricted bacterial pathogen

    Get PDF
    The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel’s disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel
    corecore