11 research outputs found

    Molecular Systematic of Three Species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: Comparative Analysis Using 28S rDNA

    Get PDF
    Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Comparison of mesozooplankton assemblages across quasi-synoptic oceanographic features on the north-western iberian shelf break

    No full text
    The mesozooplankton community at the north-western Iberian shelf break was studied among adjacent oceanographic regimes (including upwelling, stratification and anticyclonic eddies) during 17 days in autumn 2009. Zooplankton sampling locations were determined in situ, after identifying the oceanographic regimes from CTD profiles performed over the continental shelf and upper slope. Zooplankton samples were sorted indentifying taxonomically the main zooplankton groups, from phylum to subclass. Copepods were the most abundant group (ind m−3) in all stations, followed by appendicularians, doliolids and siphonophores. The mesozooplankton community was significantly different amongst oceanographic conditions. Meroplankton abundance was higher in upwelling stations; particularly lamellibranchia, polychaeta and bryozoan larvae abundance, and decreased from early to late upwelling conditions. Medusae and chaetognata were found exclusively under the latter oceanographic regime. However, dissimilarity between the oceanographic conditions was mostly based on the varying contribution of the four most common groups.Versión del editor1,784

    The use of adjuncts to reduce seroma in open incisional hernia repair: a systematic review.

    No full text
    Seroma formation remains a common complication after an incisional hernia repair. The use of surgical drains is widespread, but evidence for their use and other adjuncts is limited. Our aim was to perform a systematic review of the literature on techniques used to reduce the incidence of post-operative seroma formation

    Toward a global reference database of COI barcodes for marine zooplankton

    No full text

    The Global Prevalence of Seroma After Abdominoplasty: A Systematic Review and Meta-Analysis

    No full text
    corecore