6 research outputs found

    Perception of Vibrotactile Cues in Musical Performance

    Get PDF
    We suggest that studies on active touch psychophysics are needed to inform the design of haptic musical interfaces and better understand the relevance of haptic cues in musical performance. Following a review of the previous literature on vibrotactile perception in musical performance, two recent experiments are reported. The first experiment investigated how active finger-pressing forces affect vibration perception, finding significant effects of vibration type and force level on perceptual thresholds. Moreover, the measured thresholds were considerably lower than those reported in the literature, possibly due to the concurrent effect of large (unconstrained) finger contact areas, active pressing forces, and long-duration stimuli. The second experiment assessed the validity of these findings in a real musical context by studying the detection of vibrotactile cues at the keyboard of a grand and an upright piano. Sensitivity to key vibrations in fact not only was highest at the lower octaves and gradually decreased toward higher pitches; it was also significant for stimuli having spectral peaks of acceleration similar to those of the first experiment, i.e., below the standard sensitivity thresholds measured for sinusoidal vibrations under passive touch conditions

    A New Surface Display for 3D Haptic Rendering

    No full text

    KinesTouch: 3D Force-Feedback Rendering for Tactile Surfaces

    Get PDF
    International audienceIn this paper, we introduce the KinesTouch, a novel approach for tactile screen enhancement providing four types of haptic feedback with a single force-feedback device: compliance, friction, fine roughness, and shape. We present the design and implementation of a corresponding set of haptic effects as well as a proof-of-concept setup. Regarding friction in particular, we propose a novel effect based on large lateral motion that increases or diminishes the sliding velocity between the finger and the screen. A user study was conducted on this effect to confirm its ability to produce distinct sliding sensations. Visual cues were confirmed to influence sliding judgments, but further studies would help clarifying the role of tactile cues. Finally, we showcase several use cases illustrating the possibilities offered by the KinesTouch to enhance 2D and 3D interactions on tactile screens in various contexts
    corecore