8,241 research outputs found

    Interferon beta-1b is effective and has a favourable safety profile in Chinese patients with relapsing forms of multiple sclerosis

    Get PDF
    Abstract Background & Objective: No clinical study of any interferon beta therapy has yet been successfully conducted in Chinese multiple sclerosis patients, probably due to the low incidence of this disease in China. The primary objective of this study was to demonstrate that treating multiple sclerosis patients of Chinese origin with interferon beta-1b has a beneficial effect on disease course, as measured by the decrease of newly active lesions on magnetic resonance imaging. Methods: Chinese patients diagnosed with relapsing-remitting or secondary-progressive multiple sclerosis were enrolled in this multicenter, open label, single-arm study. Following a 3-month pre-treatment phase, patients were treated with 250 µg interferon beta-1b subcutaneously every other day for 6 months. Patients had regular assessments for treatment safety and efficacy of the treatment. Results: Thirty seven patients completed the trial. Significant decreases in the number of newly active lesions were observed in the 6-month treatment period compared with the pre-treatment period (median decrease 1.5 lesions, p<0.001). Most adverse events were mild and transient and no serious ones were observed. Conclusions: Treatment with interferon beta-1b significantly reduced the occurrence of new lesions and was well tolerated in this Chinese population. These findings support the use of interferon beta1b for treating Chinese MS patients

    Sediment addition and legume cultivation result in sustainable, long-term increases in ecosystem functions of sandy grasslands

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordDesertification of sandy grasslands is an increasing problem, with serious negative impacts on ecosystem functions. Sandy grasslands are fragile with low ecosystem productivity mainly because of the sandy soil structure with low water and nutrient holding capacities and especially low levels of nitrogen. Here, we evaluate the long-term impacts of sediment addition from a local reservoir, and grass and legume cultivation (artificial grasslands) on a sandy grassland in eastern Inner Mongolia, China. The results showed that even after 32 years, sediment addition had improved soil structure significantly, that is, increasing of silt and clay contents, soil bulk density, and water holding capacity. As the result of improved soil structure, ecosystem functions, including aboveground net primary productivity (ANPP) and soil carbon, nitrogen (N), and phosphorus storage, increased significantly. Net C, N, and P sequestration increased even after accounting for the sediment addition, due, at least partially, to the greater plant biomass trapping large quantities of wind-blown dust. Plant cultivation, especially the addition of a legume, further increased ANPP significantly, that is, the cultivation of Leymus chinensis and the legume Medicago sativa increased ANPP 6.99 and 44.62 times, respectively. Our study highlights that improvements in soil structure and cultivation with legume species can increased substantially the productivity of sandy grasslands and that the initial increases in grass biomass promoted the sequestration of wind-blown dust, which helped sustain the increases in productivity.National Key R&D Program of ChinaNational Natural Science Foundation of Chin

    Validation of finite-element models of persistent-current effects in Nb3Sn accelerator magnets

    Get PDF
    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, particularly at low field, where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb Sn accelerator magnets. Here, a finite-element method based on the measured strand magnetization is validated using three state-of-the-art Nb Sn accelerator magnets featuring different subelement diameters, conductor critical currents, magnet designs, and test temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent-current effects is discussed. The strengths, limitations, and possible improvements of the approach are also discussed. 3

    The sudden change phenomenon of quantum discord

    Full text link
    Even if the parameters determining a system's state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F. F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp 309-33

    Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    Get PDF
    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high-temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials. High superconducting transition temperature is achieved when the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. Our result offers a principle guide to search for new high temperature superconductors.Comment: 12 pages, 5 figures, 1 table, 1 supplementary materia

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared
    • …
    corecore