2,108 research outputs found

    Antagonistic genetic correlations for milking traits within the genome of dairy cattle

    Get PDF
    Genome-wide association studies can be applied to identify useful SNPs associated with complex traits. Furthermore, regional genomic mapping can be used to estimate regional variance and clarify the genomic relationships within and outside regions but has not previously been applied to milk traits in cattle. We applied both single SNP analysis and regional genomic mapping to investigate SNPs or regions associated with milk yield traits in dairy cattle. The de-regressed breeding values of three traits, total yield (kg) of milk (MLK), fat (FAT), and protein (PRT) in 305 days, from 2,590 Holstein sires in Japan were analyzed. All sires were genotyped with 40,646 single-nucleotide polymorphism (SNP) markers. A genome-wide significant region (P < 0.01) common to all three traits was identified by regional genomic mapping on chromosome (BTA) 14. In contrast, single SNP analysis identified significant SNPs only for MLK and FAT (P < 0.01), but not PRT in the same region. Regional genomic mapping revealed an additional significant region (P < 0.01) for FAT on BTA5 that was not identified by single SNP analysis. The additive whole-genomic effects estimated in the regional genomic mapping analysis for the three traits were positively correlated with one another (0.830-0.924). However, the regional genomic effects obtained by using a window size of 20 SNPs for FAT on BTA14 were negatively correlated (P < 0.01) with the regional genomic effect for MLK (-0.940) and PRT (-0.878). The BTA14 regional effect for FAT also showed significant negative correlations (P < 0.01) with the whole genomic effects for MLK (-0.153), FAT (-0.172), and PRT (-0.181). These negative genomic correlations between loci are consistent with the negative linkage disequilibrium expected for traits under directional selection. Such antagonistic correlations may hamper the fixation of the FAT increasing alleles on BTA14. In summary, regional genomic mapping found more regions associated with milk production traits than did single SNP analysis. In addition, the existence of non-zero covariances between regional and whole genomic effects may influence the detection of regional effects, and antagonistic correlations could hamper the fixation of major genes under intensive selection

    Epithelioid sarcoma with muscle metastasis detected by positron emission tomography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelioid sarcoma is an uncommon high-grade sarcoma, mostly involving the extremities.</p> <p>Case presentation</p> <p>A 33-year-old man was referred to our institute with a diagnosis of Volkmann's contracture with the symptom of flexion contracture of the fingers associated with swelling in his left forearm. Magnetic resonance imaging (MRI) showed abnormal signal intensity, comprising iso-signal intensity on T1- and high-signal intensity on T2-weighted images surrounding the flexor tendons in the forearm. Diagnosis of epithelioid sarcoma was made by open biopsy, and amputation at the upper arm was then undertaken. [<sup>18</sup>F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) detected multiple lesions with an increased uptake in the right neck, the bilateral upper arms and the right thigh, as well as in the left axillary lymph nodes, with maximum standardized uptake value (SUVmax) ranging from 2.0 to 5.5 g/ml. Magnetic resonance imaging confirmed that there was a lesion within the right thigh muscle which was suggestive of metastasis, even though the lesion was occult clinically.</p> <p>Conclusion</p> <p>Increased uptake on FDG-PET might be representative of epithelioid sarcoma, and for this reason FDG-PET may be useful for detecting metastasis. Muscle metastasis is not well documented in epithelioid sarcoma. Accordingly, the frequency of muscle metastasis, including occult metastasis, needs to be further analyzed.</p

    Finding the sources of missing heritability in a yeast cross

    Get PDF
    For many traits, including susceptibility to common diseases in humans, causal loci uncovered by genetic mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this "missing heritability" have been proposed. Here we use a large cross between two yeast strains to accurately estimate different sources of heritable variation for 46 quantitative traits and to detect underlying loci with high statistical power. We find that the detected loci explain nearly the entire additive contribution to heritable variation for the traits studied. We also show that the contribution to heritability of gene-gene interactions varies among traits, from near zero to 50%. Detected two-locus interactions explain only a minority of this contribution. These results substantially advance our understanding of the missing heritability problem and have important implications for future studies of complex and quantitative traits

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Spatial effects, sampling errors, and task specialization in the honey bee

    Get PDF
    Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists

    Practical and Theoretical Considerations in Study Design for Detecting Gene-Gene Interactions Using MDR and GMDR Approaches

    Get PDF
    Detection of interacting risk factors for complex traits is challenging. The choice of an appropriate method, sample size, and allocation of cases and controls are serious concerns. To provide empirical guidelines for planning such studies and data analyses, we investigated the performance of the multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) methods under various experimental scenarios. We developed the mathematical expectation of accuracy and used it as an indicator parameter to perform a gene-gene interaction study. We then examined the statistical power of GMDR and MDR within the plausible range of accuracy (0.50∼0.65) reported in the literature. The GMDR with covariate adjustment had a power of>80% in a case-control design with a sample size of≥2000, with theoretical accuracy ranging from 0.56 to 0.62. However, when the accuracy was<0.56, a sample size of≥4000 was required to have sufficient power. In our simulations, the GMDR outperformed the MDR under all models with accuracy ranging from 0.56∼0.62 for a sample size of 1000–2000. However, the two methods performed similarly when the accuracy was outside this range or the sample was significantly larger. We conclude that with adjustment of a covariate, GMDR performs better than MDR and a sample size of 1000∼2000 is reasonably large for detecting gene-gene interactions in the range of effect size reported by the current literature; whereas larger sample size is required for more subtle interactions with accuracy<0.56

    Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays

    Get PDF
    We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individual's presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed

    Implementation of a parentage control system in Portuguese beef-cattle with a panel of microsatellite markers

    Get PDF
    A study was conducted to assess the feasibility of applying a panel of 10 microsatellite markers in parentage control of beef cattle in Portugal. In the first stage, DNA samples were collected from 475 randomly selected animals of the Charolais, Limousin and Preta breeds. Across breeds and genetic markers, means for average number of alleles, effective number of alleles, expected heterozygosity and polymorphic information content, were 8.20, 4.43, 0.733 and 0.70, respectively. Enlightenment from the various markers differed among breeds, but the set of 10 markers resulted in a combined probability above 0.9995 in the ability to exclude a random putative parent. The marker-set thus developed was later used for parentage control in a group of 140 calves from several breeds, where there was the suspicion of possible faulty parentage recording. Overall, 76.4% of the calves in this group were compatible with the recorded parents, with most incompatibilities due to misidentification of the dam. Efforts must be made to improve the quality of pedigree information, with particular emphasis on information recorded at the calf's birth
    corecore