86 research outputs found

    Direct estimation of wall shear stress from aneurysmal morphology: A statistical approach

    Get PDF
    Computational fluid dynamics (CFD) is a valuable tool for studying vascular diseases, but requires long computational time. To alleviate this issue, we propose a statistical framework to predict the aneurysmal wall shear stress patterns directly from the aneurysm shape. A database of 38 complex intracranial aneurysm shapes is used to generate aneurysm morphologies and CFD simulations. The shapes and wall shear stresses are then converted to clouds of hybrid points containing both types of information. These are subsequently used to train a joint statistical model implementing a mixture of principal component analyzers. Given a new aneurysmal shape, the trained joint model is firstly collapsed to a shape only model and used to initialize the missing shear stress values. The estimated hybrid point set is further refined by projection to the joint model space. We demonstrate that our predicted patterns can achieve significant similarities to the CFD-based results

    Where, when and what? A time study of surgeons' work in urology.

    Get PDF
    INTRODUCTION: Staff time is a relevant resource in the delivery of health care interventions. Its measurement is a prerequisite for unit costing but usually complex. The aim of this study was to analyse the distribution of surgeons' work time among types and places of activities. A second aim was to use these data to calculate costs per unit of output. METHODS: A self-reporting work sampling study was carried out at a department of Urology. All of twelve surgeons involved in clinical care participated in a two-week analysis of their work time. RESULTS: A total of 2,485 data-points were collected, representing about 1,242 hours of work time. Surgeons spent the greater part of their work time in direct patient care, but substantial shares were required for documentation and organisation. Assistants were mainly required at the wards and consultants at the operating theatre and the outpatient unit. Staff costs of surgeons were 32 € and 29 € per patient day at the wards, respectively, 1.30 € per minute at the operating theatre and 32 € per visit at the outpatient unit. CONCLUSION: Results provided a basis for costing of health care interventions at the study site. However, future research should focus on the establishment of standardised terminology in order to increase transferability of results

    Interactive seminars or small group tutorials in preclinical medical education: results of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Learning in small group tutorials is appreciated by students and effective in the acquisition of clinical problem-solving skills but poses financial and resource challenges. Interactive seminars, which accommodate large groups, might be an alternative. This study examines the educational effectiveness of small group tutorials and interactive seminars and students' preferences for and satisfaction with these formats.</p> <p>Methods</p> <p>Students in year three of the Leiden undergraduate medical curriculum, who agreed to participate in a randomized controlled trial (RCT, n = 107), were randomly allocated to small group tutorials (n = 53) or interactive seminars (n = 54). Students who did not agree were free to choose either format (n = 105). Educational effectiveness was measured by comparing the participants' results on the end-of-block test. Data on students' reasons and satisfaction were collected by means of questionnaires. Data was analyzed using student unpaired t test or chi-square test where appropriate.</p> <p>Results</p> <p>There were no significant differences between the two educational formats in students' test grades. Retention of knowledge through active participation was the most frequently cited reason for preferring small group tutorials, while a dislike of compulsory course components was mentioned more frequently by students preferring interactive seminars. Small group tutorials led to greater satisfaction.</p> <p>Conclusions</p> <p>We found that small group tutorials leads to greater satisfaction but not to better learning results. Interactive learning in large groups might be might be an effective alternative to small group tutorials in some cases and be offered as an option.</p

    Depletion of B2 but Not B1a B Cells in BAFF Receptor-Deficient ApoE−/− Mice Attenuates Atherosclerosis by Potently Ameliorating Arterial Inflammation

    Get PDF
    We have recently identified conventional B2 cells as atherogenic and B1a cells as atheroprotective in hypercholesterolemic ApoE−/− mice. Here, we examined the development of atherosclerosis in BAFF-R deficient ApoE−/− mice because B2 cells but not B1a cells are selectively depleted in BAFF-R deficient mice. We fed BAFF-R−/− ApoE−/− (BaffR.ApoE DKO) and BAFF-R+/+ApoE−/− (ApoE KO) mice a high fat diet (HFD) for 8-weeks. B2 cells were significantly reduced by 82%, 81%, 94%, 72% in blood, peritoneal fluid, spleen and peripheral lymph nodes respectively; while B1a cells and non-B lymphocytes were unaffected. Aortic atherosclerotic lesions assessed by oil red-O stained-lipid accumulation and CD68+ macrophage accumulation were decreased by 44% and 50% respectively. B cells were absent in atherosclerotic lesions of BaffR.ApoE DKO mice as were IgG1 and IgG2a immunoglobulins produced by B2 cells, despite low but measurable numbers of B2 cells and IgG1 and IgG2a immunoglobulin concentrations in plasma. Plasma IgM and IgM deposits in atherosclerotic lesions were also reduced. BAFF-R deficiency in ApoE−/− mice was also associated with a reduced expression of VCAM-1 and fewer macrophages, dendritic cells, CD4+ and CD8+ T cell infiltrates and PCNA+ cells in lesions. The expression of proinflammatory cytokines, TNF-α, IL1-β and proinflammatory chemokine MCP-1 was also reduced. Body weight and plasma cholesterols were unaffected in BaffR.ApoE DKO mice. Our data indicate that B2 cells are important contributors to the development of atherosclerosis and that targeting the BAFF-R to specifically reduce atherogenic B2 cell numbers while preserving atheroprotective B1a cell numbers may be a potential therapeutic strategy to reduce atherosclerosis by potently reducing arterial inflammation

    Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm.</p> <p>Results</p> <p>This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|H<sub>i</sub>), which is used as confidence level. The unit network with higher P(D|H<sub>i</sub>) has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|H<sub>i</sub>), which is a unique property of the proposed algorithm.</p> <p>The algorithm is evaluated with synthetic and <it>Saccharomyces cerevisiae </it>expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm.</p> <p>The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and <it>Saccharomyces cerevisiae </it>expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian Learning algorithm.</p> <p>Conclusion</p> <p>From our evaluation experiments, we draw the conclusion as follows: 1) Simulation results show that the algorithm can be used to elucidate gene regulatory networks using limited number of experimental data points. 2) Simulation results also show that the algorithm is able to handle the problem with noisy data. 3) The experiment with Yeast expression data shows that the proposed algorithm reliably elucidates known physical or genetic events. 4) The comparison experiments show that the algorithm more efficiently performs than Sparse Bayesian Learning algorithm with noisy and limited number of data.</p

    Predicting Decisions in Human Social Interactions Using Real-Time fMRI and Pattern Classification

    Get PDF
    Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one's counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of their neuronal activation signature. However, to enable an online-assessment of the participant's mind state both approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging (fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70% when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum game. Using whole brain classification we were also able to discriminate between brain processes related to subjective emotional and motivational states and brain processes related to the evaluation of objective financial incentives
    corecore